Skip to main content

Advertisement

Log in

Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson’s Disease

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We fabricated and characterized polyvinyl alcohol (PVA)-based dissolving microneedles (MNs) for transdermal drug delivery of apomorphine hydrochloride (APO), which is used in treating the wearing-off phenomenon observed in Parkinson’s disease.

Methods

We fabricated MN arrays with 11 × 11 needles of four different lengths (300, 600, 900, and 1200 μm) by micromolding. The APO-loaded dissolving MNs were characterized in terms of their physicochemical and functional properties. We also compared the pharmacokinetic parameters after drug administration using MNs with those after subcutaneous injection by analyzing the blood concentration of APO in rats.

Results

PVA-based dissolving MNs longer than 600 μm could effectively puncture the stratum corneum of the rat skin with penetrability of approximately one-third of the needle length. Although APO is known to have chemical stability issues in aqueous solutions, the drug content in APO-loaded MNs was retained at 25°C for 12 weeks. The concentration of APO after the administration of APO-loaded 600-μm MNs that dissolved completely in skin within 60 min was 81%. The absorption of 200-μg APO delivered by MNs showed a Tmax of 20 min, Cmax of 76 ng/mL, and AUC0–120 min of 2,829 ng・min/mL, compared with a Tmax of 5 min, Cmax of 126 ng/mL, and AUC0–120 min of 3,224 ng・min/mL for subcutaneous injection. The bioavailability in terms of AUC0–120 min of APO delivered by MNs was 88%.

Conclusion

APO-loaded dissolving MNs can deliver APO via skin into the systemic circulation with rapid absorption and high bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83. https://doi.org/10.1001/jama.2014.3654.

    Article  CAS  PubMed  Google Scholar 

  2. Dawson VL, Dawson TM. Promising disease-modifying therapies for Parkinson’s disease. Sci Transl Med. 2019;11:eaba1659. https://doi.org/10.1126/scitranslmed.aba1659.

    Article  CAS  PubMed  Google Scholar 

  3. McFarthing K, Buff S, Rafaloff G, Dominey T, Wyse RK, Stott SRW. Parkinson’s disease drug therapies in the clinical trial pipeline: 2020. J Parkinsons Dis. 2020;10:757–74. https://doi.org/10.3233/JPD-202128.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carbone F, Djamshidian A, Seppi K, Poewe W. Apomorphine for Parkinson’s disease: efficacy and safety of current and new formulations. CNS Drugs. 2019;33:905–18. https://doi.org/10.1007/s40263-019-00661-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boyle A, Ondo W. Role of apomorphine in the treatment of Parkinson’s disease. CNS Drugs. 2015;29:83–9. https://doi.org/10.1007/s40263-014-0221-z.

    Article  CAS  PubMed  Google Scholar 

  6. Sam E, Jeanjean AP, Maloteaux JM, Verbeke N. Apomorphine pharmacokinetics in parkinsonism after intranasal and subcutaneous application. Eur J Drug Metab Pharmacokinet. 1995;20:27–33. https://doi.org/10.1007/BF03192285.

    Article  CAS  PubMed  Google Scholar 

  7. Zaleska B, Domzał T. Apomorphine in treatment of Parkinson’s disease with fluctuations. Neurol Neurochir Pol. 1999;33:1297–303.

    CAS  PubMed  Google Scholar 

  8. Rossi P, Colosimo C, Moro E, Tonali P, Albanese A. Acute challenge with apomorphine and levodopa in parkinsonism. Eur Neurol. 2000;43:95–101. https://doi.org/10.1159/000008142.

    Article  CAS  PubMed  Google Scholar 

  9. Pietz K, Hagell P, Odin P. Subcutaneous apomorphine in late stage Parkinson’s disease: a long term follow up. J Neurol Neurosurg Psychiatry. 1998;65:709–16. https://doi.org/10.1136/jnnp.65.5.709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu KS, Sung KC, Al-Suwayeh SA, Ku MC, Chu CC, Wang JJ, et al. Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm. 2011;78:422–31. https://doi.org/10.1016/j.ejpb.2011.01.024.

    Article  CAS  PubMed  Google Scholar 

  11. Peira E, Scolari P, Gasco MR. Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int J Pharm. 2001;226:47–51. https://doi.org/10.1016/s0378-5173(01)00759-1.

    Article  CAS  PubMed  Google Scholar 

  12. Li GL, de Vries JJ, van Steeg TJ, van den Bussche H, Maas HJ, Reeuwijk HJ, et al. Transdermal iontophoretic delivery of apomorphine in patients improved by surfactant formulation pretreatment. J Control Release. 2005;101:199–208. https://doi.org/10.1016/j.jconrel.2004.09.011.

    Article  CAS  PubMed  Google Scholar 

  13. Li GL, Danhof M, Frederik PM, Bouwstra JA. Pretreatment with a water-based surfactant formulation affects transdermal iontophoretic delivery of R-apomorphine in vitro. Pharm Res. 2003;20:653–9. https://doi.org/10.1023/a:1023211219118.

    Article  CAS  PubMed  Google Scholar 

  14. Ingrole RSJ, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials. 2021;267:120491. https://doi.org/10.1016/j.biomaterials.2020.120491.

    Article  CAS  PubMed  Google Scholar 

  15. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177–200. https://doi.org/10.1146/annurev-chembioeng-060816-101514.

    Article  CAS  PubMed  Google Scholar 

  16. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50:623–37. https://doi.org/10.1016/j.ejps.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials. 2015;57:50–8. https://doi.org/10.1016/j.biomaterials.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  18. Rouphael NG, Paine M, Mosley R, Henry S, McAllister DV, Kalluri H, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390:649–58. https://doi.org/10.1016/S0140-6736(17)30575-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palylyk-Colwell E, Ford C. A transdermal glucagon patch for severe hypoglycemia. In: CADTH Issues in Emerging Health Technologies. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. 2016;159

  20. Ameri M, Daddona PE, Maa YF. Demonstrated solid-state stability of parathyroid hormone PTH(1–34) coated on a novel transdermal microprojection delivery system. Pharm Res. 2009;26:2454–63. https://doi.org/10.1007/s11095-009-9960-9.

    Article  CAS  PubMed  Google Scholar 

  21. Rapoport AM, Ameri M, Lewis H, Kellerman DJ. Development of a novel zolmitriptan intracutaneous microneedle system (Qtrypta™) for the acute treatment of migraine. Pain Manag. 2020;10:359–66. https://doi.org/10.2217/pmt-2020-0041.

    Article  PubMed  Google Scholar 

  22. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161:645–55. https://doi.org/10.1016/j.jconrel.2012.01.042.

    Article  CAS  PubMed  Google Scholar 

  23. Birchall JC. Microneedle array technology: the time is right but is the science ready? Expert Rev Med Devices. 2006;3:1–4. https://doi.org/10.1586/17434440.3.1.1.

    Article  PubMed  Google Scholar 

  24. Al-Ghananeem AM. Transdermal delivery of apomorphine using microneedles. Patent. 2010;No. WO2010022326A2

  25. Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems - in clinical trials or on the market. Int J Pharm. 2020;573:118778. https://doi.org/10.1016/j.ijpharm.2019.118778.

    Article  CAS  PubMed  Google Scholar 

  26. Hiraishi Y, Nakagawa T, Quan YS, Kamiyama F, Hirobe S, Okada N, et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. Int J Pharm. 2013;441:570–9. https://doi.org/10.1016/j.ijpharm.2012.10.042.

    Article  CAS  PubMed  Google Scholar 

  27. Ronnander JP, Simon L, Koch A. Transdermal delivery of sumatriptan succinate using iontophoresis and dissolving microneedles. J Pharm Sci. 2019;108:3649–56. https://doi.org/10.1016/j.xphs.2019.07.020.

    Article  CAS  PubMed  Google Scholar 

  28. Abdelghany S, Tekko IA, Vora L, Larrañeta E, Permana AD, Donnelly RF. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics. 2019;11:308. https://doi.org/10.3390/pharmaceutics11070308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu D, Katsumi H, Quan YS, Kamiyama F, Kusamori K, Sakane T, et al. Permeation of sumatriptan succinate across human skin using multiple types of self-dissolving microneedle arrays fabricated from sodium hyaluronate. J Drug Target. 2016;24:752–8. https://doi.org/10.3109/1061186X.2016.1154565.

    Article  CAS  PubMed  Google Scholar 

  30. Ronnander P, Simon L, Spilgies H, Koch A, Scherr S. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci. 2018;114:84–92. https://doi.org/10.1016/j.ejps.2017.11.031.

    Article  CAS  PubMed  Google Scholar 

  31. Tas C, Joyce JC, Nguyen HX, Eangoor P, Knaack JS, Banga AK, et al. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J Control Release. 2017;268:159–65. https://doi.org/10.1016/j.jconrel.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  32. Spierings EL, Brandes JL, Kudrow DB, Weintraub J, Schmidt PC, Kellerman DJ, et al. Randomized, double-blind, placebo-controlled, parallel-group, multi-center study of the safety and efficacy of ADAM zolmitriptan for the acute treatment of migraine. Cephalalgia. 2018;38:215–24. https://doi.org/10.1177/0333102417737765.

    Article  PubMed  Google Scholar 

  33. Nomoto M, Kubo S, Nagai M, Yamada T, Tamaoka A, Tsuboi Y, et al. A randomized controlled trial of subcutaneous apomorphine for Parkinson disease: a repeat dose and pharmacokinetic study. Clin Neuropharmacol. 2015;38:241–7. https://doi.org/10.1097/WNF.0000000000000111.

    Article  CAS  PubMed  Google Scholar 

  34. Ando D, Miyazaki T, Yamamoto E, Koide T, Izutsu KI. Chemical imaging analysis of active pharmaceutical ingredient in dissolving microneedle arrays by Raman spectroscopy. Drug Deliv Transl Res. 2022;12:426–34. https://doi.org/10.1007/s13346-021-01052-y.

    Article  CAS  PubMed  Google Scholar 

  35. Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28:41–57. https://doi.org/10.1007/s11095-010-0169-8.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuo K, Yokota Y, Zhai Y, Quan YS, Kamiyama F, Mukai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Control Release. 2012;161:10–7. https://doi.org/10.1016/j.jconrel.2012.01.033.

    Article  CAS  PubMed  Google Scholar 

  37. Ozawa A, Sakaue M. New decolorization method produces more information from tissue sections stained with hematoxylin and eosin stain and masson-trichrome stain. Ann Anat. 2020;227:151431. https://doi.org/10.1016/j.aanat.2019.151431.

    Article  PubMed  Google Scholar 

  38. Naito C, Katsumi H, Suzuki T, Quan YS, Kamiyama F, Sakane T, et al. Self-dissolving microneedle arrays for transdermal absorption enhancement of human parathyroid hormone (1–34). Pharmaceutics. 2018;10:215. https://doi.org/10.3390/pharmaceutics10040215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31:3348–60. https://doi.org/10.1007/s11095-014-1424-1.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YL, Shi L, Agbo F, Yong SH, Tan PS, Ngounou Wetie AG. LC-MS/MS simultaneous quantification of apomorphine and its major metabolites in human plasma: application to clinical comparative bioavailability evaluation for the apomorphine sublingual film and a subcutaneous product. J Pharm Biomed Anal. 2020;190:113493. https://doi.org/10.1016/j.jpba.2020.113493.

    Article  CAS  PubMed  Google Scholar 

  41. Netsomboon K, Partenhauser A, Rohrer J, Elli Sündermann N, Prüfert F, Suchaoin W, et al. Preactivated thiomers for intranasal delivery of apomorphine: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;109:35–42. https://doi.org/10.1016/j.ejpb.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  42. Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37:109–31. https://doi.org/10.1016/j.biotechadv.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  43. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32. https://doi.org/10.1016/j.mser.2016.03.001.

    Article  Google Scholar 

  44. Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103. https://doi.org/10.1016/j.ejpb.2018.05.017.

    Article  CAS  PubMed  Google Scholar 

  45. Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7. https://doi.org/10.1016/j.biomaterials.2017.02.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang XP, Wang BB, Li WX, Fei WM, Cui Y, Guo XD. In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. Eur J Pharm Biopharm. 2021;160:1–8. https://doi.org/10.1016/j.ejpb.2021.01.005.

    Article  CAS  PubMed  Google Scholar 

  47. Chen BZ, Ashfaq M, Zhang XP, Zhang JN, Guo XD. In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery. J Drug Target. 2018;26:720–9. https://doi.org/10.1080/1061186X.2018.1424859.

    Article  CAS  PubMed  Google Scholar 

  48. Oh JH, Park HH, Do KY, Han M, Hyun DH, Kim CG, et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm. 2008;69:1040–5. https://doi.org/10.1016/j.ejpb.2008.02.009.

    Article  CAS  PubMed  Google Scholar 

  49. Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm. 2010;391:7–12. https://doi.org/10.1016/j.ijpharm.2010.02.007.

    Article  CAS  PubMed  Google Scholar 

  50. Römgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater. 2014;40:397–405. https://doi.org/10.1016/j.jmbbm.2014.09.015.

    Article  PubMed  Google Scholar 

  51. Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. Eur J Pharm Biopharm. 2015;89:224–31. https://doi.org/10.1016/j.ejpb.2014.11.023.

    Article  CAS  PubMed  Google Scholar 

  52. Jung EC, Maibach HI. Animal models for percutaneous absorption. J Appl Toxicol. 2015;35:1–10. https://doi.org/10.1002/jat.3004.

    Article  CAS  PubMed  Google Scholar 

  53. Liu S, Jin MN, Quan YS, Kamiyama F, Kusamori K, Katsumi H, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur J Pharm Biopharm. 2014;86:267–76. https://doi.org/10.1016/j.ejpb.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  54. Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Lüttge R, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117:238–45. https://doi.org/10.1016/j.jconrel.2006.11.009.

    Article  CAS  PubMed  Google Scholar 

  55. Glatte P, Buchmann SJ, Hijazi MM, Illigens BM, Siepmann T. Architecture of the cutaneous autonomic nervous system. Front Neurol. 2019;10:970. https://doi.org/10.3389/fneur.2019.00970.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jackson EA, Neumeyer JL, Kelly PH. Behavioral activity of some novel aporphines in rats with 6-hydroxydopamine lesions of caudate or nucleus accumbens. Eur J Pharmacol. 1983;87:15–23. https://doi.org/10.1016/0014-2999(83)90045-6.

    Article  CAS  PubMed  Google Scholar 

  57. Ang ZY, Boddy M, Liu Y, Sunderland B. Stability of apomorphine in solutions containing selected antioxidant agents. Drug Des Devel Ther. 2016;10:3253–65. https://doi.org/10.2147/DDDT.S116848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burkman AM. Some kinetic and thermodynamic characteristics of apomorphine degradation. J Pharm Sci. 1965;54:325–6. https://doi.org/10.1002/jps.2600540242.

    Article  CAS  PubMed  Google Scholar 

  59. Kim J, Gao Y, Zhao Z, Rodrigues D, Tanner EEL, Ibsen K, et al. A deep eutectic-based, self-emulsifying subcutaneous depot system for apomorphine therapy in Parkinson’s disease. Proc Natl Acad Sci U S A. 2022;119:e2110450119. https://doi.org/10.1073/pnas.2110450119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito Y, Yoshimura M, Tanaka T, Takada K. Effect of lipophilicity on the bioavailability of drugs after percutaneous administration by dissolving microneedles. J Pharm Sci. 2012;101:1145–56. https://doi.org/10.1002/jps.22814.

    Article  CAS  PubMed  Google Scholar 

  61. Liu S, Jin MN, Quan YS, Kamiyama F, Katsumi H, Sakane T, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161:933–41. https://doi.org/10.1016/j.jconrel.2012.05.030.

    Article  CAS  PubMed  Google Scholar 

  62. Bhadale RS, Londhe VY. A comparison of dissolving microneedles and transdermal film with solid microneedles for iloperidone in vivo: a proof of concept. Naunyn Schmiedeberg's Arch Pharmacol. 2023;396:239–46. https://doi.org/10.1007/s00210-022-02309-0.

    Article  CAS  Google Scholar 

  63. Agbo F, Isaacson SH, Gil R, Chiu YY, Brantley SJ, Bhargava P, et al. Pharmacokinetics and comparative bioavailability of apomorphine sublingual film and subcutaneous apomorphine formulations in patients with Parkinson’s disease and “OFF” episodes: results of a randomized, three-way crossover, open-label study. Neurol Ther. 2021;10:693–709. https://doi.org/10.1007/s40120-021-00251-6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Agbo F, Crass RL, Chiu YY, Chapel S, Galluppi G, Blum D, et al. Population pharmacokinetic analysis of apomorphine sublingual film or subcutaneous apomorphine in healthy subjects and patients with Parkinson’s disease. Clin Transl Sci. 2021;14:1464–75. https://doi.org/10.1111/cts.13008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirobe S, Azukizawa H, Matsuo K, Zhai Y, Quan YS, Kamiyama F, et al. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm Res. 2013;30(10):2664–74. https://doi.org/10.1007/s11095-013-1092-6.

    Article  CAS  PubMed  Google Scholar 

  66. Katsumi H, Tanaka Y, Hitomi K, Liu S, Quan YS, Kamiyama F, et al. Efficient transdermal delivery of alendronate, a nitrogen-containing bisphosphonate, using tip-loaded self-dissolving microneedle arrays for the treatment of osteoporosis. Pharmaceutics. 2017;9:29. https://doi.org/10.3390/pharmaceutics9030029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim JY, Han MR, Kim YH, Shin SW, Nam SY, Park JH. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–55. https://doi.org/10.1016/j.ejpb.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  68. Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, et al. Assessing the risk of a clinically significant infection from a microneedle Array patch (MAP) product. J Control Release. 2023;361:236–45. https://doi.org/10.1016/j.jconrel.2023.07.001.

    Article  CAS  PubMed  Google Scholar 

  69. McCrudden MT, Alkilani AZ, Courtenay AJ, McCrudden CM, McCloskey B, Walker C, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015;5(1):3–14. https://doi.org/10.1007/s13346-014-0211-1.

    Article  CAS  PubMed  Google Scholar 

  70. Ripolin A, Quinn J, Larrañeta E, Vicente-Perez EM, Barry J, Donnelly RF. Successful application of large microneedle patches by human volunteers. Int J Pharm. 2017;521:92–101. https://doi.org/10.1016/j.ijpharm.2017.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li W, Li S, Fan X, Prausnitz MR. Microneedle patch designs to increase dose administered to human subjects. J Control Release. 2021;339:350–60. https://doi.org/10.1016/j.jconrel.2021.09.036.

    Article  CAS  PubMed  Google Scholar 

  72. Goud KY, Mahato K, Teymourian H, Longardner K, Litvan I, Wang J. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: toward Parkinson management. Sens Actuators B Chem. 2022;354:131234. https://doi.org/10.1016/j.snb.2021.131234.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by JSPS KAKENHI (Grant Number JP22K15350) and AMED (Grant Number JP22mk0101193).

Author information

Authors and Affiliations

Authors

Contributions

D.A. designed the projects, performed the experiments, directed the research, and wrote the manuscript. A.O. and M.S. performed histological experiments. E.Y., T.M., T.K., Y. S., and K.I. assisted in writing the manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Daisuke Ando.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, D., Ozawa, A., Sakaue, M. et al. Fabrication and Characterization of Dissolving Microneedles for Transdermal Drug Delivery of Apomorphine Hydrochloride in Parkinson’s Disease. Pharm Res 41, 153–163 (2024). https://doi.org/10.1007/s11095-023-03621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03621-x

Keywords

Navigation