Skip to main content

Advertisement

Log in

N-oxidation Regioselectivity and Risk Prediction Using DFT-ALIE Calculations

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Introduction

The formation of N-oxide degradants is a major concern in development of new drugs due to potential effects on a compound’s pharmacological activity. Such effects include but are not limited to solubility, stability, toxicity, and efficacy. In addition, these chemical transformations can impact physicochemical properties that affect drug manufacturability. Hence identification and control of N-oxide transformations is of critical importance in the development of new therapeutics.

Objective

This study describes the development of an in-silico approach to identify N-oxide formation in APIs with respect to autoxidation.

Methods

Average Local Ionization Energy (ALIE) calculations were carried out using molecular modeling techniques and application of Density Functional Theory (DFT) at the B3LYP/6-31G(d,p) level of theory. A total of 257 nitrogen atoms and 15 different oxidizable nitrogen types were used in developing this method.

Results

The results show that ALIE could be reliably used to predict the most susceptible nitrogen for N-oxide formation. A risk scale was developed that rapidly categorizes nitrogen’s oxidative vulnerabilities as small, medium, or high.

Conclusions

The developed process presents a powerful tool to identify structural susceptibilities for N-oxidation as well as enabling rapid structure elucidation in resolving potential experimental ambiguities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshioka S, Stella VJ. Stability of drugs and dosage forms. Springer Science & Business Media; 2000.

    Google Scholar 

  2. Kushwaha P. Significance of Stability Studies on Degradation Product. Res J Pharm Technol. 2009;2:621–7.

    CAS  Google Scholar 

  3. Rawat T, Pandey I. Forced degradation studies for drug substances and drug products-scientific and regulatory considerations. J Pharm Sci Res. 2015;7:238.

    CAS  Google Scholar 

  4. Niguram P, Kate AS. Structural characterization of forced degradation products of empagliflozin by high resolution mass spectrometry. J Liq Chromatogr Relat Technol. 2019;42:417–28.

    Article  CAS  Google Scholar 

  5. Garg A, Solas DW, Takahashi LH, Cassella JV. Forced degradation of fentanyl: identification and analysis of impurities and degradants. J Pharm Biomed Anal. 2010;53:325–34.

    Article  CAS  PubMed  Google Scholar 

  6. Runje M, Babić S, Meštrović E, Nekola I, Dujmić-Vučinić Ž, Vojčić N. Forced degradation of nepafenac: Development and validation of stability indicating UHPLC method. J Pharm Biomed Anal. 2016;123:42–52.

    Article  CAS  PubMed  Google Scholar 

  7. Hartauer KJ, Arbuthnot GN, Baertschi SW, Johnson RA, Luke WD, Pearson NG, et al. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: identification and control of an oxidative degradation product. Pharm Dev Technol. 2000;5:303–10.

    Article  CAS  PubMed  Google Scholar 

  8. Bach RD, Su M-D, Schlegel HB. Oxidation of amines and sulfides with hydrogen peroxide and alkyl hydrogen peroxide. The nature of the oxygen-transfer step. J Am Chem Soc. 1994;116:5379–91.

    Article  CAS  Google Scholar 

  9. Bäcktorp C, Örnskov E, Evertsson E, Remmelgas J, Broo A. A qualitative method for prediction of amine oxidation in methanol and water. J Pharm Sci. 2015;104:1409–20.

    Article  PubMed  Google Scholar 

  10. Voogd C, der Stel JV, Jacobs J. The mutagenic action of quindoxin, carbadox, olaquindox and some other N-oxides on bacteria and yeast. Mutat Res/Genet Toxicol. 1980;78:233–42.

    Article  CAS  Google Scholar 

  11. Gabay M, Cabrera M, Maio RD, Paez JA, Campillo N, Lavaggi ML, et al. Mutagenicity of N-oxide containing heterocycles and related compounds: experimental and theoretical studies. Curr Top Med Chem. 2014;14:1374–87.

    Article  CAS  PubMed  Google Scholar 

  12. Tennant RW, Ashby J. Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 39 chemicals tested for carcinogenicity by the US National Toxicology Program. Mutat Res/Rev Genet Toxicol. 1991;257:209–27.

    Article  CAS  Google Scholar 

  13. Pracht P, Wilcken R, Udvarhelyi A, Rodde S, Grimme S. High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge. J Comput Aided Mol Des. 2018;32:1139–49.

    Article  CAS  PubMed  Google Scholar 

  14. Bartolini M, Bertucci C, Gotti R, Tumiatti V, Cavalli A, Recanatini M, et al. Determination of the dissociation constants (pKa) of basic acetylcholinesterase inhibitors by reversed-phase liquid chromatography. J Chromatogr A. 2002;958:59–67.

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen JE, Gunner M, Bertrand García-Moreno E. The pKa Cooperative: A collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins. 2011;79:3249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uudsemaa M, Kanger T, Lopp M, Tamm T. pKa calculation for monoprotonated bipiperidine, bimorpholine and their derivatives in H2O and MeCN. Chem Phys Lett. 2010;485:83–6.

    Article  CAS  Google Scholar 

  17. Toro-Labbé A. Theoretical aspects of chemical reactivity. Elsevier; 2006.

    Google Scholar 

  18. Politzer P, Murray JS, Bulat FA. Average local ionization energy: a review. J Mol Model. 2010;16:1731–42.

    Article  CAS  PubMed  Google Scholar 

  19. Kulshrestha P, Sukumar N, Murray JS, Giese RF, Wood TD. Computational prediction of antibody binding sites on tetracycline antibiotics: electrostatic potentials and average local ionization energies on molecular surfaces. J Phys Chem A. 2009;113:756–66.

    Article  CAS  PubMed  Google Scholar 

  20. Mary YS, Miniyar PB, Mary YS, Resmi K, Panicker CY, Armaković S, et al. Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J Mol Struct. 2018;1173:469–80.

    Article  CAS  Google Scholar 

  21. Brinck T, Stenlid JH. The molecular surface property approach: a guide to chemical interactions in chemistry, medicine, and material science. Adv Theory and Simul. 2019;2:1800149.

    Article  Google Scholar 

  22. Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, et al. CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory. ChemMedChem. 2009;4:657–69.

    Article  CAS  PubMed  Google Scholar 

  23. Politzer P, Lane P, Murray JS. Some interesting aspects of N-oxides. Mol Phys. 2014;112:719–25.

    Article  CAS  Google Scholar 

  24. Chang G, Guida WC, Still WC. An internal-coordinate Monte Carlo method for searching conformational space. J Am Chem Soc. 1989;111:4379–86.

    Article  CAS  Google Scholar 

  25. Saunders M, Houk K, Wu YD, Still WC, Lipton M, Chang G, et al. Conformations of cycloheptadecane. A comparison of methods for conformational searching. J Am Chem Soc. 1990;112:1419–27.

    Article  CAS  Google Scholar 

  26. Mohamadi F, Richards NG, Guida WC, Liskamp R, Lipton M, Caufield C, et al. Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem. 1990;11:440–67.

    Article  CAS  Google Scholar 

  27. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 16. 2016

  28. Hadidi S, Shiri F, Norouzibazaz M. A DFT study of the degradation mechanism of anticancer drug carmustine in an aqueous medium. Struct Chem. 2019;30:1315–21.

    Article  CAS  Google Scholar 

  29. Lin W, Zhao B, Ping S, Zhang X, Ji Y, Ren Y. Ultraviolet oxidative degradation of typical antidepressants: Pathway, product toxicity, and DFT theoretical calculation. Chemosphere. 2022;305: 135440.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Yang Y, Lei J, Liu W, Tong M, Liang J. The degradation pathways of carbamazepine in advanced oxidation process: A mini review coupled with DFT calculation. Sci Total Environ. 2021;779: 146498.

    Article  CAS  PubMed  Google Scholar 

  31. Secretan P-H, Yayé HS, Sogaldi A, Antignac M, Tortolano L, Thirion O, et al. Intrinsic stability of the antiviral drug umifenovir by stress testing and DFT studies. J Pharm Biomed Anal. 2021;196: 113934.

    Article  CAS  PubMed  Google Scholar 

  32. Kurmi M, Singh S. Stability behavior of antiretroviral drugs and their combinations. 7: Comparative degradation pathways of lamivudine and emtricitabine and explanation to their differential degradation behavior by density functional theory. J Pharm Biomed Anal. 2017;142:155–61.

    Article  CAS  PubMed  Google Scholar 

  33. Feng L, Song W, Oturan N, Karbasi M, van Hullebusch ED, Esposito G, et al. Electrochemical oxidation of Naproxen in aqueous matrices: Elucidating the intermediates’ eco-toxicity, by assessing its degradation pathways via experimental and density functional theory (DFT) approaches. Chem Eng J. 2023;451: 138483.

    Article  CAS  Google Scholar 

  34. Becke AD. Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  35. Pietro WJ, Francl MM, Hehre WJ, DeFrees DJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. J Am Chem Soc. 1982;104:5039–48.

    Article  CAS  Google Scholar 

  36. Lu T, Chen F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model. 2012;38:314–23.

    Article  PubMed  Google Scholar 

  37. Brandes B, Halz JH, Merzweiler K, Deigner H-P, Csuk R. Synthesis and structure of azelastine-N-oxides. J Mol Struct. 2022;1251: 132033.

    Article  CAS  Google Scholar 

  38. Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. A series of cinchona-derived N-oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. J Org Chem. 2016;81:7042–50.

    Article  CAS  PubMed  Google Scholar 

  39. Shiomi N, Yamamoto K, Nagasaki K, Hatanaka T, Funahashi Y, Nakamura S. Enantioselective Oxidative Ring-Opening Reaction of Aziridines with α-Nitroesters Using Cinchona Alkaloid Amide/Nickel (II) Catalysts. Org Lett. 2017;19:74–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel A. Valdivia-Berroeta or Nina C. Gonnella.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 999 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdivia-Berroeta, G.A., Gonnella, N.C. N-oxidation Regioselectivity and Risk Prediction Using DFT-ALIE Calculations. Pharm Res 40, 1873–1883 (2023). https://doi.org/10.1007/s11095-023-03553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03553-6

Keywords

Navigation