Skip to main content

Advertisement

Log in

Prediction of Omeprazole Pharmacokinetics and its Inhibition on Gastric Acid Secretion in Humans Using Physiologically Based Pharmacokinetic-Pharmacodynamic Model Characterizing CYP2C19 Polymorphisms

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a whole physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model to describe the pharmacokinetics and anti-gastric acid secretion of omeprazole in CYP2C19 extensive metabolizers (EMs), intermediate metabolizers (IMs), poor metabolizers (PMs) and ultrarapid metabolizers (UMs) following oral or intravenous administration.

Methods

A PBPK/PD model was built using Phoenix WinNolin software. Omeprazole was mainly metabolized by CYP2C19 and CYP3A4 and the CYP2C19 polymorphism was incorporated using in vitro data. We described the PD by using a turn-over model with parameter estimates from dogs and the effect of a meal on the acid secretion was also implemented. The model predictions were compared to 53 sets of clinical data.

Results

Predictions of omeprazole plasma concentration (72.2%) and 24 h stomach pH after administration (85%) were within 0.5–2.0-fold of the observed values, indicating that the PBPK-PD model was successfully developed. Sensitivity analysis demonstrated that the contributions of the tested factors to the plasma concentration of omeprazole were Vmax,2C19 ≈ Papp > Vmax,3A4 > Kti, and contributions to its pharmacodynamic were Vmax,2C19 > kome > kms > Papp > Vmax,3A4. The simulations showed that while the initial omeprazole dose in UMs, EMs, and IMs increased 7.5-, 3- and 1.25-fold compared to those of PMs, the therapeutic effect was similar.

Conclusions

The successful establishment of this PBPK-PD model highlights that pharmacokinetic and pharmacodynamic profiles of drugs can be predicted using preclinical data. The PBPK-PD model also provided a feasible alternative to empirical guidance for the recommended doses of omeprazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data selected during this study are included in this published article and its electronic supplementary information files, and further inquiries can be directed to the corresponding authors.

Abbreviations

AUC:

Area under the curve

Cmax :

Peak plasma concentrations

EMs:

Extensive metabolizers

IMs:

Intermediate metabolizers

IVIVE:

In vitro to in vivo extrapolation

Papp :

Apparent permeability

Peff :

Effective permeability coefficient

PBPK-PD:

Physiologically based pharmacokinetic-pharmacodynamic

PMs:

Poor metabolizers

PPI:

Proton pump inhibitor

UMs:

Ultrarapid metabolizers

VPCs:

Visual predictive checks

References

  1. Howden CW, Holt S. Acid suppression as treatment for NSAID-related peptic ulcers. Am J Gastroenterol. 1991;86(12):1720–2.

    CAS  PubMed  Google Scholar 

  2. Yamazaki H, Inoue K, Shaw PM, Checovich WJ, Guengerich FP, Shimada T. Different contributions of cytochrome P450 2C19 and 3A4 in the oxidation of omeprazole by human liver microsomes: effects of contents of these two forms in individual human samples. J Pharmacol Exp Ther. 1997;283(2):434–42.

    CAS  PubMed  Google Scholar 

  3. Botton MR, Whirl-Carrillo M, Del Tredici AL, Sangkuhl K, Cavallari LH, Agúndez JAG, et al. PharmVar GeneFocus: CYP2C19. Clin Pharmacol Ther. 2021;109(2):352–66. https://doi.org/10.1002/cpt.1973.

    Article  PubMed  Google Scholar 

  4. Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34. https://doi.org/10.1002/cpt.147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simon T, Steg PG, Gilard M, Blanchard D, Bonello L, Hanssen M, et al. Clinical events as a function of proton pump inhibitor use, clopidogrel use, and cytochrome P450 2C19 genotype in a large nationwide cohort of acute myocardial infarction: results from the French registry of acute ST-elevation and non-ST-elevation myocardial infarction (FAST-MI) registry. Circ. 2011;123(5):474–82. https://doi.org/10.1161/circulationaha.110.965640.

    Article  CAS  Google Scholar 

  6. Zhang HJ, Zhang XH, Liu J, Sun LN, Shen YW, Zhou C, et al. Effects of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of proton pump inhibitors. Pharmacol Res. 2020;152:104606. https://doi.org/10.1016/j.phrs.2019.104606.

    Article  PubMed  Google Scholar 

  7. Klotz U. Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther. 2006;44(7):297–302. https://doi.org/10.5414/cpp44297.

    Article  CAS  PubMed  Google Scholar 

  8. Payan M, Rouini MR, Tajik N, Ghahremani MH, Tahvilian R. Hydroxylation index of omeprazole in relation to CYP2C19 polymorphism and sex in a healthy Iranian population. DARU : J Faculty Pharm Tehran Univ Med Sci. 2014;22(1):81. https://doi.org/10.1186/s40199-014-0081-6.

    Article  CAS  Google Scholar 

  9. Bell NJ, Hunt RH. Role of gastric acid suppression in the treatment of gastro-oesophageal reflux disease. Gut. 1992;33(1):118–24. https://doi.org/10.1136/gut.33.1.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burget DW, Chiverton SG, Hunt RH. Is there an optimal degree of acid suppression for healing of duodenal ulcers? A model of the relationship between ulcer healing and acid suppression. Gastroenterol. 1990;99(2):345–51. https://doi.org/10.1016/0016-5085(90)91015-x.

    Article  CAS  Google Scholar 

  11. Howden CW, Hunt RH. The relationship between suppression of acidity and gastric ulcer healing rates. Aliment Pharmacol Ther. 1990;4(1):25–33. https://doi.org/10.1111/j.1365-2036.1990.tb00445.x.

    Article  CAS  PubMed  Google Scholar 

  12. Kirchheiner J, Glatt S, Fuhr U, Klotz U, Meineke I, Seufferlein T, et al. Relative potency of proton-pump inhibitors-comparison of effects on intragastric pH. Eur J Clin Pharmacol. 2009;65(1):19–31. https://doi.org/10.1007/s00228-008-0576-5.

    Article  CAS  PubMed  Google Scholar 

  13. Shimatani T, Inoue M, Kuroiwa T, Xu J, Mieno H, Nakamura M, et al. Acid-suppressive effects of rabeprazole, omeprazole, and lansoprazole at reduced and standard doses: a crossover comparative study in homozygous extensive metabolizers of cytochrome P450 2C19. Clin Pharmacol Ther. 2006;79(1):144–52. https://doi.org/10.1016/j.clpt.2005.09.012.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou L, Gan J, Yoshitsugu H, Gu X, Lutz JD, Masson E, et al. Integration of physiologically-based pharmacokinetic modeling into early clinical development: An investigation of the pharmacokinetic nonlinearity. CPT Pharmacometrics Syst Pharmacol. 2015;4(5):286–94. https://doi.org/10.1002/psp4.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JR. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos. 2012;33(2):85–98. https://doi.org/10.1002/bdd.1769.

    Article  CAS  PubMed  Google Scholar 

  16. Scotcher D, Galetin A. PBPK simulation-based evaluation of ganciclovir Crystalluria risk factors: effect of renal impairment, old age, and low fluid intake. AAPS J. 2021;24(1):13. https://doi.org/10.1208/s12248-021-00654-1.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Zhao K, Liu F, Xie Q, Zhong Z, Miao M, et al. Prediction of Deoxypodophyllotoxin disposition in mouse, rat, monkey, and dog by physiologically based pharmacokinetic model and the extrapolation to human. Front Pharmacol. 2016;7:488. https://doi.org/10.3389/fphar.2016.00488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhatnagar S, Mukherjee D, Salem AH, Miles D, Menon RM, Gibbs JP. Dose adjustment of venetoclax when co-administered with posaconazole: clinical drug-drug interaction predictions using a PBPK approach. Cancer Chemother Pharmacol. 2021;87(4):465–74. https://doi.org/10.1007/s00280-020-04179-w.

    Article  CAS  PubMed  Google Scholar 

  19. Abouir K, Samer CF, Gloor Y, Desmeules JA, Daali Y. Reviewing data integrated for PBPK model development to predict metabolic drug-drug interactions: shifting perspectives and emerging trends. Front Pharmacol. 2021;12:708299. https://doi.org/10.3389/fphar.2021.708299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kong WM, Sun BB, Wang ZJ, Zheng XK, Zhao KJ, Chen Y, et al. Physiologically based pharmacokinetic-pharmacodynamic modeling for prediction of vonoprazan pharmacokinetics and its inhibition on gastric acid secretion following intravenous/oral administration to rats, dogs and humans. Acta Pharmacol Sin. 2020;41(6):852–65. https://doi.org/10.1038/s41401-019-0353-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fryklund J, Gedda K, Wallmark B. Specific labelling of gastric H+,K+-ATPase by omeprazole. Biochem Pharmacol. 1988;37(13):2543–9. https://doi.org/10.1016/0006-2952(88)90244-4.

    Article  CAS  PubMed  Google Scholar 

  22. Abelö A, Eriksson UG, Karlsson MO, Larsson H, Gabrielsson J. A turnover model of irreversible inhibition of gastric acid secretion by omeprazole in the dog. J Pharmacol Exp Ther. 2000;295(2):662–9.

    PubMed  Google Scholar 

  23. Abelö A, Holstein B, Eriksson UG, Gabrielsson J, Karlsson MO. Gastric acid secretion in the dog: a mechanism-based pharmacodynamic model for histamine stimulation and irreversible inhibition by omeprazole. J Pharmacokinet Pharmacodyn. 2002;29(4):365–82. https://doi.org/10.1023/a:1020905224001.

    Article  PubMed  Google Scholar 

  24. Dujic T, Cvijic S, Elezovic A, Bego T, Imamovic Kadric S, Malenica M, et al. Interaction between omeprazole and Gliclazide in relation to CYP2C19 phenotype. J Personal Med. 2021;11(5) https://doi.org/10.3390/jpm11050367.

  25. Wu F, Gaohua L, Zhao P, Jamei M, Huang SM, Bashaw ED, et al. Predicting nonlinear pharmacokinetics of omeprazole enantiomers and racemic drug using physiologically based pharmacokinetic modeling and simulation: application to predict drug/genetic interactions. Pharm Res. 2014;31(8):1919–29. https://doi.org/10.1007/s11095-013-1293-z.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Yang H, Xu J, Zhao K, Chen Y, Liang L, et al. Prediction of atorvastatin pharmacokinetics in high-fat diet and low-dose Streptozotocin-induced diabetic rats using a Semiphysiologically based pharmacokinetic model involving both enzymes and transporters. Drug Metab Dispos. 2019;47(10):1066–79. https://doi.org/10.1124/dmd.118.085902.

    Article  CAS  PubMed  Google Scholar 

  27. Marier JF, Dubuc MC, Drouin E, Alvarez F, Ducharme MP, Brazier JL. Pharmacokinetics of omeprazole in healthy adults and in children with gastroesophageal reflux disease. Ther Drug Monit. 2004;26(1):3–8. https://doi.org/10.1097/00007691-200402000-00003.

    Article  CAS  PubMed  Google Scholar 

  28. Cui C, Sun J, Wang X, Yu Z, Shi Y. Factors contributing to drug release from enteric-coated omeprazole capsules: An in vitro and in vivo pharmacokinetic study and IVIVC evaluation in beagle dogs. Dose-Response : Publ Int Hormesis Soc. 2020;18(1):1559325820908980. https://doi.org/10.1177/1559325820908980.

    Article  CAS  Google Scholar 

  29. Xu RJ, Kong WM, An XF, Zou JJ, Liu L, Liu XD. Physiologically-based pharmacokinetic-pharmacodynamics model characterizing CYP2C19 polymorphisms to predict Clopidogrel pharmacokinetics and its anti-platelet aggregation effect following Oral administration to coronary artery disease patients with or without diabetes. Front Pharmacol. 2020;11:593982. https://doi.org/10.3389/fphar.2020.593982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CA, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci Official J Eur Fed Pharma Sci. 2014;63:167–77. https://doi.org/10.1016/j.ejps.2014.07.003.

    Article  CAS  Google Scholar 

  31. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84. https://doi.org/10.2174/138920007782109733.

    Article  CAS  PubMed  Google Scholar 

  32. Rowland Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut - the effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci Official J Eur Fed Pharm Sci. 2010;39(5):298–309. https://doi.org/10.1016/j.ejps.2009.12.002.

    Article  CAS  Google Scholar 

  33. Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, et al. Protein abundance of clinically relevant drug-metabolizing enzymes in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2018;104(3):515–24. https://doi.org/10.1002/cpt.967.

    Article  CAS  PubMed  Google Scholar 

  34. Furuta T, Ohashi K, Kosuge K, Zhao XJ, Takashima M, Kimura M, et al. CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther. 1999;65(5):552–61. https://doi.org/10.1016/s0009-9236(99)70075-5.

    Article  CAS  PubMed  Google Scholar 

  35. Berstad K, Massey H, Berstad A. Effect of enprostil on basal and meal-stimulated gastric acid and pepsin secretion, serum gastrin and gastric emptying in healthy persons. Aliment Pharmacol Ther. 1988;2(1):65–72. https://doi.org/10.1111/j.1365-2036.1988.tb00673.x.

    Article  CAS  PubMed  Google Scholar 

  36. Steere B, Baker JA, Hall SD, Guo Y. Prediction of in vivo clearance and associated variability of CYP2C19 substrates by genotypes in populations utilizing a pharmacogenetics-based mechanistic model. Drug Metabol Dispos Biol Fate Chem. 2015;43(6):870–83. https://doi.org/10.1124/dmd.114.061523.

    Article  CAS  Google Scholar 

  37. Rowland Yeo K, Walsky RL, Jamei M, Rostami-Hodjegan A, Tucker GT. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci. 2011;43(3):160–73. https://doi.org/10.1016/j.ejps.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

  38. Qian CQ, Zhao KJ, Chen Y, Liu L, Liu XD. Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P-glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover. Eur J Pharm Sci. 2019;134:194–204. https://doi.org/10.1016/j.ejps.2019.04.026.

    Article  CAS  PubMed  Google Scholar 

  39. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13. https://doi.org/10.1016/j.clpt.2005.10.002.

    Article  CAS  PubMed  Google Scholar 

  40. Samant S, Jiang XL, Peletier LA, Shuldiner AR, Horenstein RB, Lewis JP, et al. Identifying clinically relevant sources of variability: the clopidogrel challenge. Clin Pharmacol Ther. 2017;101(2):264–73. https://doi.org/10.1002/cpt.459.

    Article  CAS  PubMed  Google Scholar 

  41. Schmitt W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol in Vitro. 2008;22(2):457–67. https://doi.org/10.1016/j.tiv.2007.09.010.

  42. Hanioka N, Tsuneto Y, Saito Y, Maekawa K, Sawada J, Narimatsu S. Influence of CYP2C19*18 and CYP2C19*19 alleles on omeprazole 5-hydroxylation: in vitro functional analysis of recombinant enzymes expressed in Saccharomyces cerevisiae. Basic Clin Pharmacol Toxicol. 2008;102(4):388–93. https://doi.org/10.1111/j.1742-7843.2008.00222.x.

  43. Guo Y, Lucksiri A, Dickinson GL, Vuppalanchi RK, Hilligoss JK, Hall SD. Quantitative prediction of CYP3A4- and CYP3A5-mediated drug interactions. Clin Pharmacol Ther. 2020;107(1):246–56. https://doi.org/10.1002/cpt.1596.

  44. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedeberg's Arch Pharmacol. 2001;364(6):551–7. https://doi.org/10.1007/s00210-001-0489-7.

    Article  CAS  Google Scholar 

  45. Nakamura T, Arai Y, Tando Y, Terada A, Yamada N, Tsujino M, et al. Effect of omeprazole on changes in gastric and upper small intestine pH levels in patients with chronic pancreatitis. Clin Ther. 1995;17(3):448–59. https://doi.org/10.1016/0149-2918(95)80110-3.

    Article  CAS  PubMed  Google Scholar 

  46. Capitanini A, Lupi A, Osteri F, Petrone I, Del Corso C, Straniti M, et al. Gastric pH, sevelamer hydrochloride and omeprazole. Clin Nephrol. 2005;64(4):320–2. https://doi.org/10.5414/cnp64320.

    Article  CAS  PubMed  Google Scholar 

  47. Uno T, Niioka T, Hayakari M, Yasui-Furukori N, Sugawara K, Tateishi T. Absolute bioavailability and metabolism of omeprazole in relation to CYP2C19 genotypes following single intravenous and oral administrations. Eur J Clin Pharmacol. 2007;63(2):143–9. https://doi.org/10.1007/s00228-006-0251-7.

    Article  CAS  PubMed  Google Scholar 

  48. Furuta K, Adachi K, Ohara S, Morita T, Tanimura T, Koshino K, et al. Relationship between the acid-inhibitory effects of two proton pump inhibitors and CYP2C19 genotype in Japanese subjects: a randomized two-way crossover study. J Int Med Res. 2010;38(4):1473–83. https://doi.org/10.1177/147323001003800430.

    Article  CAS  PubMed  Google Scholar 

  49. Shirai N, Furuta T, Moriyama Y, Okochi H, Kobayashi K, Takashima M, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther. 2001;15(12):1929–37. https://doi.org/10.1046/j.1365-2036.2001.01108.x.

    Article  CAS  PubMed  Google Scholar 

  50. Shimatani T, Inoue M, Kuroiwa T, Horikawa Y, Mieno H, Nakamura M. Effect of omeprazole 10 mg on intragastric pH in three different CYP2C19 genotypes, compared with omeprazole 20 mg and lafutidine 20 mg, a new H2-receptor antagonist. Aliment Pharmacol Ther. 2003;18(11–12):1149–57. https://doi.org/10.1046/j.1365-2036.2003.01804.x.

    Article  CAS  PubMed  Google Scholar 

  51. Sahara S, Sugimoto M, Uotani T, Ichikawa H, Yamade M, Iwaizumi M, et al. Twice-daily dosing of esomeprazole effectively inhibits acid secretion in CYP2C19 rapid metabolisers compared with twice-daily omeprazole, rabeprazole or lansoprazole. Aliment Pharmacol Ther. 2013;38(9):1129–37. https://doi.org/10.1111/apt.12492.

    Article  CAS  PubMed  Google Scholar 

  52. Hu XP, Xu JM, Hu YM, Mei Q, Xu XH. Effects of CYP2C19 genetic polymorphism on the pharmacokinetics and pharmacodynamics of omeprazole in Chinese people. J Clin Pharm Ther. 2007;32(5):517–24. https://doi.org/10.1111/j.1365-2710.2007.00851.x.

    Article  CAS  PubMed  Google Scholar 

  53. Saitoh T, Fukushima Y, Otsuka H, Hirakawa J, Mori H, Asano T, et al. Effects of rabeprazole, lansoprazole and omeprazole on intragastric pH in CYP2C19 extensive metabolizers. Aliment Pharmacol Ther. 2002;16(10):1811–7. https://doi.org/10.1046/j.1365-2036.2002.01348.x.

    Article  CAS  PubMed  Google Scholar 

  54. Hunfeld NG, Mathot RA, Touw DJ, van Schaik RH, Mulder PG, Franck PF, et al. Effect of CYP2C19*2 and *17 mutations on pharmacodynamics and kinetics of proton pump inhibitors in Caucasians. Br J Clin Pharmacol. 2008;65(5):752–60. https://doi.org/10.1111/j.1365-2125.2007.03094.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park S, Hyun YJ, Kim YR, Lee JH, Ryu S, Kim JM, et al. Effects of CYP2C19 genetic polymorphisms on PK/PD responses of omeprazole in Korean healthy volunteers. J Korean Med Sci. 2017;32(5):729–36. https://doi.org/10.3346/jkms.2017.32.5.729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chowers Y, Atarot T, Pratha VS, Fass R. The effect of once daily omeprazole and succinic acid (VECAM) vs once daily omeprazole on 24-h intragastric pH. Neurogastroenterol Motil Official J Eur Gastrointest Motil Soc. 2012;24(5):426–31–e208–9. https://doi.org/10.1111/j.1365-2982.2012.01884.x.

    Article  CAS  Google Scholar 

  57. Shimatani T, Inoue M, Kuroiwa T, Xu J, Tazuma S, Horikawa Y, et al. Acid-suppressive efficacy of a reduced dosage of rabeprazole: comparison of 10 mg twice daily rabeprazole with 20 mg twice daily rabeprazole, 30 mg twice daily lansoprazole, and 20 mg twice daily omeprazole by 24-hr intragastric pH-metry. Dig Dis Sci. 2005;50(7):1202–6. https://doi.org/10.1007/s10620-005-2760-0.

    Article  CAS  PubMed  Google Scholar 

  58. Kim KN, Yang SW, Kim H, Kwak SS, Kim YS, Cho DY. Acid inhibitory effect of a combination of omeprazole and sodium bicarbonate (CDFR0209) compared with delayed-release omeprazole 40 mg alone in healthy adult male subjects. Clin Pharmacol Drug Dev. 2018;7(1):53–8. https://doi.org/10.1002/cpdd.331.

    Article  CAS  PubMed  Google Scholar 

  59. Roh HK, Kim PS, Lee DH, Tybring G, Sagar M, Park CS, et al. Omeprazole treatment of Korean patients: effects on gastric pH and gastrin release in relation to CYP2C19 geno- and phenotypes. Basic Clin Pharma Toxic. 2004;95(3):112–9. https://doi.org/10.1111/j.1742-7843.2004.950302.x.

    Article  CAS  Google Scholar 

  60. Sagar M, Tybring G, Dahl ML, Bertilsson L, Seensalu R. Effects of omeprazole on intragastric pH and plasma gastrin are dependent on the CYP2C19 polymorphism. Gastroenterol. 2000;119(3):670–6. https://doi.org/10.1053/gast.2000.16515.

    Article  CAS  Google Scholar 

  61. Miehlke S, Löbe S, Madisch A, Kuhlisch E, Laass M, Grossmann D, et al. Intragastric acidity during administration of generic omeprazole or esomeprazole - a randomised, two-way crossover study including CYP2C19 genotyping. Aliment Pharmacol Ther. 2011;33(4):471–6. https://doi.org/10.1111/j.1365-2036.2010.04544.x.

    Article  CAS  PubMed  Google Scholar 

  62. Sugimoto M, Furuta T, Shirai N, Ikuma M, Hishida A, Ishizaki T. Initial 48-hour acid inhibition by intravenous infusion of omeprazole, famotidine, or both in relation to cytochrome P450 2C19 genotype status. Clin Pharmacol Ther. 2006;80(5):539–48. https://doi.org/10.1016/j.clpt.2006.08.010.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Zhang H, Meng L, Wang M, Yuan H, Ou N, et al. Influence of CYP2C19 on the relationship between pharmacokinetics and intragastric pH of omeprazole administered by successive intravenous infusions in Chinese healthy volunteers. Eur J Clin Pharmacol. 2010;66(6):563–9. https://doi.org/10.1007/s00228-010-0821-6.

    Article  CAS  PubMed  Google Scholar 

  64. Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913–58. https://doi.org/10.2165/00003088-200241120-00002.

    Article  CAS  PubMed  Google Scholar 

  65. Koukoula M, Dotsikas Y, Molou E, Schulpis KH, Thodi G, Chatzidaki M, et al. Study of the effect of CYP2C19 polymorphisms on omeprazole pharmacokinetics by utilizing validated LC-MS/MS and real time-PCR methods. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1047:173–9. https://doi.org/10.1016/j.jchromb.2016.06.046.

    Article  CAS  PubMed  Google Scholar 

  66. Andersson T, Bergstrand R, Cederberg C. Influence of acid secretory status on absorption of omeprazole from enteric coated granules. Br J Clin Pharmacol. 1991;31(3):275–8. https://doi.org/10.1111/j.1365-2125.1991.tb05530.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nyrén O, Gustavsson S, Adami HO, Lööf L. Methodological aspects of clinical trials in non-ulcer dyspepsia with special reference to selectional factors. Scand J Gastroenterol Suppl. 1985;109:159–62. https://doi.org/10.3109/00365528509103952.

    Article  PubMed  Google Scholar 

  68. Tamminga WJ, Wemer J, Oosterhuis B, Weiling J, Wilffert B, de Leij LF, et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol. 1999;55(3):177–84. https://doi.org/10.1007/s002280050615.

    Article  CAS  PubMed  Google Scholar 

  69. Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L. CYP2C19 activity comparison between swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol. 2010;66(9):871–7. https://doi.org/10.1007/s00228-010-0835-0.

    Article  CAS  PubMed  Google Scholar 

  70. Xie HG, Huang SL, Xu ZH, Xiao ZS, He N, Zhou HH. Evidence for the effect of gender on activity of (S)-mephenytoin 4′-hydroxylase (CYP2C19) in a Chinese population. Pharmacogenet. 1997;7(2):115–9. https://doi.org/10.1097/00008571-199704000-00004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the authors for their participation and helpful discussions. Due to space constraints, we are aware that there is far more research associated with this field and regret that we could not cite every available report.

Funding

This study was supported by funding from the National Natural Science Foundation of China (N0.82073922; 82173884; 82204511), the “Double First-Class” university project (No. CPU2022QZ21) and the Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 1412200067).

Author information

Authors and Affiliations

Authors

Contributions

SL, HY, LL, and XL designed the paper frame. LX, LJ, and YY selected the data. LY and HZ prepared the figures and tables. SL, LL, and XL wrote the manuscript. All authors contributed to the paper and approved the submitted version.

Corresponding authors

Correspondence to Xiaodong Liu, Hanyu Yang or Li Liu.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xie, L., Yang, L. et al. Prediction of Omeprazole Pharmacokinetics and its Inhibition on Gastric Acid Secretion in Humans Using Physiologically Based Pharmacokinetic-Pharmacodynamic Model Characterizing CYP2C19 Polymorphisms. Pharm Res 40, 1735–1750 (2023). https://doi.org/10.1007/s11095-023-03531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03531-y

Keywords

Navigation