Skip to main content
Log in

Enabling Efficient Design of Biological Formulations Through Advanced Characterization

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from Ref. [88] with permission from the Royal Society of Chemistry.

Fig. 10

Similar content being viewed by others

Abbreviations

API:

Active Pharmaceutical Ingredient

ASA:

Anti-Streptavidin Antibody

B 22 :

Second virial coefficient

DSC:

Differential Scanning Calorimetry

k D :

Diffusion interaction parameter

LDH:

Lactate dehydrogenase

mAb:

Monoclonal Antibody

MbCO:

Carboxy-myoglobin

Mdsc:

Modulated DSC

MHH:

Mannitol Hemihydrate

NaP:

Sodium phosphate

NIST:

National Institute of Standards and Technology

NISTmAb:

NISTmAb Primary Sample 8670

P188:

Poloxamer 188

PBS:

Phosphate Buffered Saline

PPI:

Protein-Protein Interactions

PS 20:

Polysorbate 20

SANS:

Small-angle Neutron Scattering

SAS:

Small-angle Scattering

SAXS:

Small-angle X-ray Scattering

SEC:

Size Exclusion Chromatography

SRM:

Standard Reference Material

TBA:

tert-Butyl alcohol

Te:

Eutectic temperature

Tg”, Tg’ and Tg:

Glass transition temperature

tSA:

Tetrameric Streptavidin Antibody

WANS:

Wide-angle Neutron Scattering

WAXS:

Wide-angle X-ray Scattering

XRD:

X-ray Diffractometry

References

  1. Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF. Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev. 2001;46(1–3):307–26.

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter JF, Chang BS, Garzon-Rodriguez W, Randolph TW.  Rational design of stable lyophilized protein formulations: theory and practice. Rational design of stable protein formulations. 2002 109–133.

  3. Thakral S, Sonje J, Munjal B, Suryanarayanan R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Adv Drug Deliv Rev. 2021;173:1–19.

    Article  CAS  PubMed  Google Scholar 

  4. W W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

  5. Sundaramurthi P, Suryanarayanan R. Calorimetry and complementary techniques to characterize frozen and freeze-dried systems. Adv Drug Deliv Rev. 2012;64(5):384–95.

    Article  CAS  PubMed  Google Scholar 

  6. Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatnagar BS, Tchessalov S, Lewis LM, Johnson R.  Freeze drying of biologics. In. Encyclopedia of Pharmaceutical Science and Technology, Six Volume Set: CRC Press. 2013 p. 1673–1722.

  8. Kasper JC, Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78(2):248–63.

    Article  CAS  PubMed  Google Scholar 

  9. Connolly BD, Le L, Patapoff TW, Cromwell MEM, Moore JMR, Lam P. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature. J Pharm Sci. 2015;104(12):4170–84.

    Article  CAS  PubMed  Google Scholar 

  10. Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.

    Article  CAS  PubMed  Google Scholar 

  11. Gómez G. Crystallization-related pH changes during freezing of sodium phosphate buffer solutions. In.: University of Michigan; 1995.

    Google Scholar 

  12. Pikal-Cleland KA, Rodriguez-Hornedo N, Amidon GL, Carpenter JF. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase. Arch Biochem Biophys. 2000;384(2):398–406.

    Article  CAS  PubMed  Google Scholar 

  13. Archer DG.  Thermodynamic properties of the NaCl+ H2O system l. Thermodynamic properties of NaCl (cr). J Phys Chem Ref Data. 1992 21(1):1–21.

  14. Kasraian K, DeLuca PP.  Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm Res. 1995 12(4):484–490.

  15. Bhatnagar BS, Sonje J, Shalaev E, Martin SW, Teagarden DL, Suryanarayanan R. A refined phase diagram of the tert-butanol–water system and implications on lyophilization process optimization of pharmaceuticals. Phys Chem Chem Phys. 2020;22(3):1583–90.

    Article  CAS  PubMed  Google Scholar 

  16. Shalaev EY, Franks F, Echlin P. Crystalline and Amorphous Phases in the Ternary System Water− Sucrose− Sodium Chloride. J Phys Chem. 1996;100(4):1144–52.

    Article  CAS  Google Scholar 

  17. Chatterjee K, Shalaev EY, Suryanarayanan R.  Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent. J Pharm Sci. 2005 94(4):798–808.

  18. Thorat AA, Suryanarayanan R. Characterization of phosphate buffered saline (PBS) in frozen State and after Freeze-drying. Pharm Res. 2019;36(7):98.

    Article  PubMed  Google Scholar 

  19. Nail SL, Jiang S, Chongprasert S, Knopp SA. Fundamentals of freeze-drying. Pharm Biotechnol. 2002;14:281–360.

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa K, Morishita D, Suzuki T, Sano N. Experimental and computational evaluation of the degree of micro-collapse formations in freeze-dried cakes. Drying Technol.  2022 1–13.

  21. Johnson RE, Kirchhoff CF, Gaud HT. Mannitol-sucrose mixtures–versatile formulations for protein lyophilization. J Pharm Sci. 2002;91(4):914–22.

    Article  CAS  PubMed  Google Scholar 

  22. Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg′ in pharmaceutical lyophilization. J Pharm Sci. 2001;90(7):872–87.

    Article  CAS  PubMed  Google Scholar 

  23. Telang C, Yu L, Suryanarayanan R. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm Res. 2003;20(4):660–7.

    Article  CAS  PubMed  Google Scholar 

  24. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2005;22(11):1978–85.

    Article  CAS  PubMed  Google Scholar 

  25. Knopp MM, Löbmann K, Elder DP, Rades T, Holm R. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur J Pharm Sci. 2016;87:164–73.

    Article  CAS  PubMed  Google Scholar 

  26. Chang LL, Milton N, Rigsbee D, Mishra DS, Tang XC, Thomas LC, Pikal MJ. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim Acta. 2006;444(2):141–7.

    Article  CAS  Google Scholar 

  27. Pansare SK, Patel SM. Practical considerations for determination of glass transition temperature of a maximally freeze concentrated solution. AAPS PharmSciTech. 2016;17(4):805–19.

    Article  CAS  PubMed  Google Scholar 

  28. Kharatyan T, Gopireddy SR, Ogawa T, Kodama T, Nishimoto N, Osada S, Scherließ R, Urbanetz NA. Quantitative Analysis of Glassy State Relaxation and Ostwald Ripening during Annealing Using Freeze-Drying Microscopy. Pharmaceutics. 2022;14(6):1176.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Surana R, Pyne A, Rani M, Suryanarayanan R. Measurement of enthalpic relaxation by differential scanning calorimetry—effect of experimental conditions. Thermochim Acta. 2005;433(1–2):173–82.

    Article  CAS  Google Scholar 

  30. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B. 1999;103(20):4113–21.

    Article  CAS  Google Scholar 

  31. Pyne A, Surana R, Suryanarayanan R. Enthalpic relaxation in frozen aqueous trehalose solutions. Thermochim Acta. 2003;405(2):225–34.

    Article  CAS  Google Scholar 

  32. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Her L-M, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  34. Levine H, Slade L. Thermomechanical properties of small-carbohydrate–water glasses and ‘rubbers’ Kinetically metastable systems at sub-zero temperatures. J Chem Soc, Faraday trans I. 1988;84(8):2619–33.

    Article  CAS  Google Scholar 

  35. Sacha GA, Nail SL. Thermal analysis of frozen solutions: multiple glass transitions in amorphous systems. J Pharm Sci. 2009;98(9):3397–405.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu M, Yu L. Polyamorphism of D-mannitol. J Phys Chem. 2017;146(24):244503.

    Article  Google Scholar 

  37. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshioka S, Forney KM, Aso Y, Pikal MJ. Effect of sugars on the molecular motion of freeze-dried protein formulations reflected by NMR relaxation times. Pharm Res. 2011;28(12):3237–47.

    Article  CAS  PubMed  Google Scholar 

  39. Breen E, Curley J, Overcashier D, Hsu C, Shire S. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res. 2001;18(9):1345–53.

    Article  CAS  PubMed  Google Scholar 

  40. Sonje J, Thakral S, Mayhugh B, Sacha G, Nail S, Srinivasan J, Suryanarayanan R. Mannitol Hemihydrate in Lyophilized Protein Formulations: Impact of its Dehydration During Storage on Sucrose Crystallinity and Protein Stability. Int J Pharm.  2022 121974.

  41. Chang LL, Shepherd D, Sun J, Tang XC, Pikal MJ. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: Implications for the mechanism of protein stabilization in the solid state. J Pharm Sci. 2005;94(7):1445–55.

    Article  CAS  PubMed  Google Scholar 

  42. Izutsu K-i, Yoshioka S, Terao T. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res. 1993;10(8):1232–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatnagar B, Tchessalov S.  Advances in Freeze Drying of Biologics and Future Challenges and Opportunities. Drying Technologies for Biotechnology and Pharmaceutical Applications. 2020 137–177.

  44. Burger A, Henck J-O, Hetz S, Rollinger JM, Weissnicht AA, Stöttner H. Energy/Temperature Diagram and Compression Behavior of the Polymorphs of d-Mannitol. J Pharm Sci. 2000;89(4):457–68.

    Article  CAS  PubMed  Google Scholar 

  45. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  46. Anko M, Bjelošević M, Planinšek O, Trstenjak U, Logar M, Grabnar PA, Brus B. The formation and effect of mannitol hemihydrate on the stability of monoclonal antibody in the lyophilized state. Int J Pharm. 2019;564:106–16.

    Article  CAS  PubMed  Google Scholar 

  47. Srinivasan JM, Wegiel LA, Hardwick LM, Nail SL. The Influence of Mannitol Hemihydrate on the Secondary Drying Dynamics of a Protein Formulation: A Case Study. J Pharm Sci. 2017;106(12):3583–90.

    Article  CAS  PubMed  Google Scholar 

  48. Varshney DB, Kumar S, Shalaev EY, Kang S-W, Gatlin LA, Suryanarayanan R. Solute crystallization in frozen systems–use of synchrotron radiation to improve sensitivity. Pharm Res. 2006;23(10):2368–74.

    Article  CAS  PubMed  Google Scholar 

  49. Kuwamoto S, Akiyama S, Fujisawa T. Radiation damage to a protein solution, detected by synchrotron X-ray small-angle scattering: dose-related considerations and suppression by cryoprotectants. J Synchrotron Radiat. 2004;11(6):462–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12(5):505–23.

    Article  CAS  PubMed  Google Scholar 

  51. Bhatnagar B, Zakharov B, Fisyuk A, Wen X, Karim F, Lee K, Seryotkin Y, Mogodi M, Fitch A, Boldyreva E. Protein/ice interaction: high-resolution synchrotron X-ray diffraction differentiates pharmaceutical proteins from lysozyme. J Phys Chem B. 2019;123(27):5690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sundaramurthi P, Suryanarayanan R. Trehalose crystallization during freeze-drying: implications on lyoprotection. J Phys Chem Lett. 2010;1(2):510–4.

    Article  CAS  Google Scholar 

  53. Singh SK.  Sucrose and trehalose in therapeutic protein formulations. In. Challenges in Protein Product Development: Springer; 2018 p. 63–95.

  54. Cavatur RK, Suryanarayanan R. Characterization of phase transitions during freeze-drying by in situ X-ray powder diffractometry. Pharm Dev Technol. 1998;3(4):579–86.

    Article  CAS  PubMed  Google Scholar 

  55. Thorat AA, Munjal B, Geders TW, Suryanarayanan R. Freezing-induced protein aggregation - Role of pH shift and potential mitigation strategies. J Control Release. 2020;323:591–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kett VL, Fitzpatrick S, Cooper B, Craig DQ. An investigation into the subambient behavior of aqueous mannitol solutions using differential scanning calorimetry, cold stage microscopy, and X-ray diffractometry. J Pharm Sci. 2003;92(9):1919–29.

    Article  CAS  PubMed  Google Scholar 

  57. Mehta M, Bhardwaj SP, Suryanarayanan R. Controlling the physical form of mannitol in freeze-dried systems. Eur J Pharm Biopharm. 2013;85(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigues MA, Rego P, Geraldes V, Connor LE, Oswald ID, Sztucki M, Shalaev E. Mannitol Crystallization at Sub-Zero Temperatures: Time/Temperature-Resolved Synchrotron X-ray Diffraction Study and the Phase Diagram. J Phys Chem Lett. 2021;12:1453–60.

    Article  CAS  PubMed  Google Scholar 

  59. Hawe A, Frieß W. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol–sucrose–NaCl formulations. Eur J Pharm Biopharm. 2006;64(3):316–25.

    Article  CAS  PubMed  Google Scholar 

  60. Izutsu K-i, Yosohika S, Terao T. Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying. Chem Pharm Bull. 1994;42(1):5–8.

    Article  CAS  Google Scholar 

  61. Thakral S, Sonje J, Suryanarayanan R.  Anomalous behavior of mannitol hemihydrate: Implications on sucrose crystallization in colyophilized systems. Int J Pharm. 2020 119629.

  62. Lu X, Pikal MJ. Freeze-drying of mannitol–trehalose–sodium chloride-based formulations: The impact of annealing on dry layer resistance to mass transfer and cake structure. Pharm Dev Technol. 2004;9(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  63. Dixon D, Tchessalov S, Barry A, Warne N. The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization. J Pharm Sci. 2009;98(9):3419–29.

    Article  CAS  PubMed  Google Scholar 

  64. Larsen HML, Trnka H, Grohganz H. Formation of mannitol hemihydrate in freeze-dried protein formulations—A design of experiment approach. Int J Pharm. 2014;460(1):45–52.

    Article  PubMed  Google Scholar 

  65. Kulkarni SS, Patel SM, Suryanarayanan R, Rinella JV, Bogner RH. Key factors governing the reconstitution time of high concentration lyophilized protein formulations. Eur J Pharm Biopharm. 2021;165:361–73.

    Article  CAS  PubMed  Google Scholar 

  66. Kulkarni SS, Suryanarayanan R, Rinella JV Jr, Bogner RH. Mechanisms by which crystalline mannitol improves the reconstitution time of high concentration lyophilized protein formulations. Eur J Pharm Biopharm. 2018;131:70–81.

    Article  CAS  PubMed  Google Scholar 

  67. Al-Hussein A, Gieseler H. The effect of mannitol crystallization in mannitol–sucrose systems on LDH stability during freeze-drying. J Pharm Sci. 2012;101(7):2534–44.

    Article  CAS  PubMed  Google Scholar 

  68. Jacques DA, Trewhella J. Small-angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls. Protein Sci. 2010;19(4):642–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rambo RP, Tainer JA. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol. 2010;20(1):128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneidman-Duhovny D, Kim SJ, Sali A. Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol. 2012;12(1):1–12.

    Article  Google Scholar 

  71. Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature. 2013;496(7446):477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gabel F.  Small-angle neutron scattering for structural biology of protein–RNA complexes. In. Methods in Enzymology: Elsevier. 2015 p. 391–415.

  73. Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc. 2016;11(11):2122–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trewhella J. Small-angle scattering and 3D structure interpretation. Curr Opin Struct Biol. 2016;40:1–7.

    Article  CAS  PubMed  Google Scholar 

  75. Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ. 2017;4(5):518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mahieu E, Gabel F. Biological small-angle neutron scattering: recent results and development. Acta Crystallographica Section D: Structural Biology. 2018;74(8):715–26.

    Article  CAS  PubMed  Google Scholar 

  77. Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol. 2019;58:197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Da Vela S, Svergun DI. Methods, development and applications of small-angle X-ray scattering to characterize biological macromolecules in solution. Current research in structural biology. 2020;2:164–70.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Trewhella J.  Recent advances in small-angle scattering and its expanding impact in structural biology. Structure. 2021

  80. Whitten AE, Cai S, Trewhella J. MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Crystallogr. 2008;41(1):222–6.

    Article  CAS  Google Scholar 

  81. Sarachan KL, Curtis JE, Krueger S. Small-angle scattering contrast calculator for protein and nucleic acid complexes in solution. J Appl Crystallogr. 2013;46(6):1889–93.

    Article  CAS  Google Scholar 

  82. Krueger S. Small-angle neutron scattering contrast variation studies of biological complexes: Challenges and triumphs. Curr Opin Struct Biol. 2022;74:102375.

    Article  CAS  PubMed  Google Scholar 

  83. Krueger S. Designing and Performing Biological Solution Small-Angle Neutron Scattering Contrast Variation Experiments on Multi-component Assemblies. Adv Exp Med Biol. 2017;1009:65–85.

    Article  CAS  PubMed  Google Scholar 

  84. Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, Krueger S.  Deuterium labeling together with contrast variation small-angle neutron scattering suggests how Skp captures and releases unfolded outer membrane proteins. In. Methods in Enzymology: Elsevier. 2016 p. 159–210.

  85. Dong Y-D, Boyd BJ. Applications of X-ray scattering in pharmaceutical science. Int J Pharm. 2011;417(1–2):101–11.

    Article  CAS  PubMed  Google Scholar 

  86. Boyd BJ, Rades T.  Applications of small angle X-ray scattering in pharmaceutical science. In. Analytical Techniques in the Pharmaceutical Sciences: Springer; 2016 p. 339–360.

  87. Curtis JE, Nanda H, Khodadadi S, Cicerone M, Lee HJ, McAuley A, Krueger S. Small-angle neutron scattering study of protein crowding in liquid and solid phases: lysozyme in aqueous solution, frozen solution, and carbohydrate powders. J Phys Chem B. 2012;116(32):9653–67.

    Article  CAS  PubMed  Google Scholar 

  88. Curtis JE, McAuley A, Nanda H, Krueger S. Protein structure and interactions in the solid state studied by small-angle neutron scattering. Faraday Discuss. 2012;158(1):285–99.

    Article  CAS  PubMed  Google Scholar 

  89. Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432(7016):492–5.

    Article  CAS  PubMed  Google Scholar 

  90. Cardinaux F, Stradner A, Schurtenberger P, Sciortino F, Zaccarelli E. Modeling equilibrium clusters in lysozyme solutions. EPL (Europhysics Letters). 2007;77(4):48004.

    Article  Google Scholar 

  91. Shukla A, Mylonas E, Di Cola E, Finet S, Timmins P, Narayanan T, Svergun DI. Absence of equilibrium cluster phase in concentrated lysozyme solutions. PNAS. 2008;105(13):5075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Porcar L, Falus P, Chen W-R, Faraone A, Fratini E, Hong K, Baglioni P, Liu Y. Formation of the Dynamic Clusters in Concentrated Lysozyme Protein Solutions. J Phys Chem Lett. 2010;1(1):126–9.

    Article  CAS  Google Scholar 

  93. Bergman MJ, Garting T, Schurtenberger P, Stradner A. Experimental Evidence for a Cluster Glass Transition in Concentrated Lysozyme Solutions. J Phys Chem B. 2019;123(10):2432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Olsson C, Swenson J. The role of disaccharides for protein–protein interactions–a SANS study. Mol Phys. 2019;117(22):3408–16.

    Article  CAS  Google Scholar 

  95. Yearley EJ, Zarraga IE, Shire SJ, Scherer TM, Gokarn Y, Wagner NJ, Liu Y. Small-angle neutron scattering characterization of monoclonal antibody conformations and interactions at high concentrations. Biophys J. 2013;105(3):720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yearley EJ, Godfrin PD, Perevozchikova T, Zhang H, Falus P, Porcar L, Nagao M, Curtis JE, Gawande P, Taing R. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity. Biophys J. 2014;106(8):1763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Godfrin PD, Zarraga IE, Zarzar J, Porcar L, Falus P, Wagner NJ, Liu Y. Effect of hierarchical cluster formation on the viscosity of concentrated monoclonal antibody formulations studied by neutron scattering. J Phys Chem B. 2016;120(2):278–91.

    Article  CAS  PubMed  Google Scholar 

  98. Castellanos MM, Pathak JA, Leach W, Bishop SM, Colby RH. Explaining the non-Newtonian character of aggregating monoclonal antibody solutions using small-angle neutron scattering. Biophys J. 2014;107(2):469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Castellanos MM, Clark NJ, Watson MC, Krueger S, McAuley A, Curtis JE. Role of molecular flexibility and colloidal descriptions of proteins in crowded environments from small-angle scattering. J Phys Chem B. 2016;120(49):12511–8.

    Article  CAS  PubMed  Google Scholar 

  100. Castellanos MM, Snyder JA, Lee M, Chakravarthy S, Clark NJ, McAuley A, Curtis JE. Characterization of monoclonal antibody–protein antigen complexes using small-angle scattering and molecular modeling. Antibodies. 2017;6(4):25.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xu AY, Clark NJ, Pollastrini J, Espinoza M, Kim H-J, Kanapuram S, Kerwin B, Treuheit MJ, Krueger S, McAuley A. Effects of Monovalent Salt on Protein-Protein Interactions of Dilute and Concentrated Monoclonal Antibody Formulations. Antibodies. 2022;11(2):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schiel JE, Mouchahoir CA.  Glycan Analysis of NIST mAb Reference Material. 2015.

  103. Castellanos MM, Howell SC, Gallagher DT, Curtis JE. Characterization of the NISTmAb reference material using small-angle scattering and molecular simulation. Anal Bioanal Chem. 2018;410(8):2141–59.

    Article  CAS  PubMed  Google Scholar 

  104. Castellanos MM, Mattison K, Krueger S, Curtis JE. Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation part II: concentrated solutions. Anal Bioanal Chem. 2018;410(8):2161–71.

    Article  CAS  PubMed  Google Scholar 

  105. Xu AY, Castellanos MM, Mattison K, Krueger S, Curtis JE. Studying excipient modulated physical stability and viscosity of monoclonal antibody formulations using small-angle scattering. Mol Pharm. 2019;16(10):4319–38.

    Article  CAS  PubMed  Google Scholar 

  106. Chou SG, Soper AK, Khodadadi S, Curtis JE, Krueger S, Cicerone MT, Fitch AN, Shalaev EY. Pronounced microheterogeneity in a sorbitol–water mixture observed through variable temperature neutron scattering. J Phys Chem B. 2012;116(15):4439–47.

    Article  CAS  PubMed  Google Scholar 

  107. Yuan X, Krueger S, Sztucki M, Jones RL, Curtis JE, Shalaev E.  Phase Behavior of Poloxamer 188 Aqueous Solutions at Subzero Temperatures: A Neutron and X-ray Scattering Study. J Phys Chem B. 2021.

  108. Khodadadi S, Clark NJ, McAuley A, Cristiglio V, Curtis JE, Shalaev EY, Krueger S. Influence of sorbitol on protein crowding in solution and freeze-concentrated phases. Soft Matter. 2014;10(23):4056–60.

    Article  CAS  PubMed  Google Scholar 

  109. Yuan X, Krueger S, Shalaev E.  Protein-surfactant and protein-protein interactions during freeze and thaw: a small-angle neutron scattering study of lysozyme solutions with polysorbate and poloxamer. J Pharm Sci. 2022.

  110. Sonje J, Thakral S, Krueger S, Suryanarayanan R. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering. Mol Pharm. 2021;18(12):4459–74.

    Article  CAS  PubMed  Google Scholar 

  111. Jaenicke R. Reassociation and reactivation of lactic dehydrogenase from the unfolded subunits. Eur J Pharm Biochem. 1974;46(1):149–55.

    Article  CAS  Google Scholar 

  112. Giuffrida S, Panzica M, Giordano F, Longo A. SAXS study on myoglobin embedded in amorphous saccharide matrices. Eur Phys J E. 2011;34(9):1–7.

    Article  Google Scholar 

  113. Longo A, Giuffrida S, Cottone G, Cordone L. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering. Phys Chem Chem Phys. 2010;12(25):6852–8.

    Article  CAS  PubMed  Google Scholar 

  114. Giuffrida S, Cottone G, Bellavia G, Cordone L. Proteins in amorphous saccharide matrices: Structural and dynamical insights on bioprotection. Eur Phys J E. 2013;36(7):1–12.

    Article  Google Scholar 

  115. Phan-Xuan T, Bogdanova E, Millqvist Fureby A, Fransson J, Terry AE, Kocherbitov V. Hydration-induced structural changes in the solid state of protein: A SAXS/WAXS study on lysozyme. Mol Pharm. 2020;17(9):3246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cristiglio V, Sztucki M, Wu C, Shalaev E.  Impact of lyoprotectors on protein-protein separation in the solid state: Neutron-and X-ray-scattering investigation. Biochimica et Biophysica Acta (BBA)-General Subjects. 2022 1866(5):130101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interests/competing interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonje, J., Thakral, S., Krueger, S. et al. Enabling Efficient Design of Biological Formulations Through Advanced Characterization. Pharm Res 40, 1459–1477 (2023). https://doi.org/10.1007/s11095-023-03495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03495-z

Keywords

Navigation