Skip to main content
Log in

A Retrospective Analysis of Preclinical and Clinical Pharmacokinetics from Administration of Long-Acting Aqueous Suspensions

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Administration of long-acting injectable suspensions is an increasingly common approach to increasing patient compliance and improving therapeutic efficacy through less frequent dosing. While several long-acting suspensions have recently been marketed, parameters modulating drug absorption from suspension-based formulations are not well understood. Further, methods for predicting clinical pharmacokinetic data from preclinical studies are not well established. Together, these limitations hamper compound selection, formulation design and formulation selection through heavy reliance on iterative optimization in preclinical and clinical studies. This article identifies key parameters influencing absorption from suspension-based formulations through compilation and analysis of preclinical and clinical pharmacokinetic data of seven compounds marketed as suspensions; achievable margins for predicting the clinical dose and input rate from preclinical studies as a function of the preclinical species, the clinical injection location and the intended therapeutic duration were also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wuelfing WP, Daublain P, Kesisoglou F, Templeton A, McGregor C. Preclinical dose number and its application in understanding drug absorption risk and formulation design for preclinical species. Mol Pharm. 2015;12(4):1031–9. https://doi.org/10.1021/mp500504q.

    Article  CAS  PubMed  Google Scholar 

  2. Grady H, Elder D, Webster GK, et al. Industry’s view on using quality control, biorelevant, and clinically relevant dissolution tests for pharmaceutical development, registration, and commercialization. J Pharm Sci. 2018;107(1):34–41. https://doi.org/10.1016/j.xphs.2017.10.019.

    Article  CAS  PubMed  Google Scholar 

  3. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373–82. https://doi.org/10.1002/ddr.21461.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad A, Pepin X, Aarons L, et al. IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies. Eur J Pharm Biopharm. 2020;156(August):50–63. https://doi.org/10.1016/j.ejpb.2020.08.006.

    Article  CAS  PubMed  Google Scholar 

  5. Sharan S, Fang L, Lukacova V, Chen X, Hooker AC, Karlsson MO. Model-informed drug development for long-acting injectable products: summary of American College of Clinical Pharmacology Symposium. Clin Pharmacol Drug Dev. 2021;10(3):220–8. https://doi.org/10.1002/cpdd.928.

    Article  CAS  PubMed  Google Scholar 

  6. Dadhaniya T, Sharma O, Gohel M, Mehta P. Current approaches for in vitro drug release study of long acting parenteral formulations. Curr Drug Deliv. 2015;12(3):256–70. https://doi.org/10.2174/1567201812666150209143731.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson AR, Forster SP, White D, et al. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv. 2021;18(5):577–93. https://doi.org/10.1080/17425247.2021.1856072.

    Article  CAS  PubMed  Google Scholar 

  8. Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: An industry perspective. Adv Drug Deliv Rev. 2020;167:19–46. https://doi.org/10.1016/j.addr.2020.11.008.

    Article  CAS  PubMed  Google Scholar 

  9. O’Brien MN, Jiang W, Wang Y, Loffredo DM. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J Control Release. 2021;336:144–58. https://doi.org/10.1016/j.jconrel.2021.06.017.

    Article  CAS  PubMed  Google Scholar 

  10. Remenar JF. Making the leap from daily oral dosing to long-acting injectables: Lessons from the antipsychotics. Mol Pharm. 2014;11(6):1739–49. https://doi.org/10.1021/mp500070m.

    Article  CAS  PubMed  Google Scholar 

  11. Paquette SM, Dawit H, Hickey MB, Merisko-Liversidge E, Almarsson Ö, Deaver DR. Long-acting atypical antipsychotics: Characterization of the local tissue response. Pharm Res. 2014;31(8):2065–77. https://doi.org/10.1007/s11095-014-1308-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darville N, Van Heerden M, Vynckier A, et al. Intramuscular administration of paliperidone palmitate extended-release injectable microsuspension induces a subclinical inflammatory reaction modulating the pharmacokinetics in rats. J Pharm Sci. 2014;103(7):2072–87. https://doi.org/10.1002/jps.24014.

    Article  CAS  PubMed  Google Scholar 

  13. Darville N, Van Heerden M, Erkens T, et al. Modeling the time course of the tissue responses to intramuscular long-acting paliperidone palmitate nano-/microcrystals and polystyrene microspheres in the rat. Toxicol Pathol. 2016;44(2):189–210. https://doi.org/10.1177/0192623315618291.

    Article  CAS  PubMed  Google Scholar 

  14. Darville N, Van Heerden M, Erkens T, et al. Modeling the time course of the tissue responses to intramuscular long-acting paliperidone palmitate nano-/microcrystals and polystyrene microspheres in the rat. Toxicol Pathol. 2016;44(2):189–210. https://doi.org/10.1177/0192623315618291.

    Article  CAS  PubMed  Google Scholar 

  15. Jucker BM, Fuchs EJ, Lee S, et al. Multiparametric magnetic resonance imaging to characterize cabotegravir long-acting formulation depot kinetics in healthy adult volunteers. Br J Clin Pharmacol. 2021;(January):1–12. https://doi.org/10.1111/bcp.14977.

  16. Darville N, Van Heerden M, Mariën D, et al. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension. J Control Release. 2016;230:95–108. https://doi.org/10.1016/j.jconrel.2016.03.041.

    Article  CAS  PubMed  Google Scholar 

  17. Samtani MN, Vermeulen A, Stuyckens K. Population pharmacokinetics of intramuscular paliperidone palmitate in patients with schizophrenia: A novel once-monthly, long-acting formulation of an atypical antipsychotic. Clin Pharmacokinet. 2009;48(9):585–600. https://doi.org/10.2165/11316870-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  18. Landovitz RJ, Li S, Grinsztejn B, et al. Safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-uninfected individuals: HPTN 077, a phase 2a randomized controlled trial. PLoS Med. 2018;15(11):1–22. https://doi.org/10.1371/journal.pmed.1002690.

    Article  CAS  Google Scholar 

  19. Lilly E. Clinical pharmacology and biopharmaceutics review: pharmacometric review of olanzapine pamoate; 2009. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022173s000ClinPharmR.pdf. Accessed 20 Jan 2023.

  20. Chan VO, Colville J, Persaud T, Buckley O, Hamilton S, Torreggiani WC. Intramuscular injections into the buttocks: Are they truly intramuscular? 2006;58:480–4. https://doi.org/10.1016/j.ejrad.2006.01.008.

    Article  CAS  Google Scholar 

  21. Haramiti N, Lorans R, Lutwin M, Kaleya R. Injection granulomas: Intramuscle or intrafat? Arch Fam Med. 1994;3:146–8.

    Article  Google Scholar 

  22. Cockshott P, Thompson G, Howlett L, Seeley E. Intramuscular or intralipomatous injections? N Engl J Med. 1982;307:356–8 https://www.nejm.org/doi/10.1056/NEJM198208053070607?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_0pubmed. Accessed 20 Jan 2023.

    Article  CAS  PubMed  Google Scholar 

  23. Janssen. Invega trinza prescribing information. 2017. https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/INVEGA+TRINZA-pi.pdf

  24. Alkermes. ARISTADA® Prescribing Information. 2015. https://www.aristadahcp.com/downloadables/ARISTADA-PI.pdf. Accessed 20 Jan 2023.

  25. Lilly E. Zyprexa relprevv (olanzapine) for extended release injectable suspension prescribing information. 1996. https://pi.lilly.com/us/zyprexa_relprevv.pdf. Accessed 20 Jan 2023.

  26. Spreen W, Min S, Ford SL, Chen S, Lou Y, Bomar M. Pharmacokinetics, safety, and monotherapy antiviral activity of GSK1265744 an HIV integrase strand transfer inhibitor. HIV Clin Trials. 2013;14(5). https://doi.org/10.1310/hct1405-192.

  27. Ravenstijn P, Remmerie B, Savitz A, et al. Pharmacokinetics, safety, and tolerability of paliperidone palmitate 3-month formulation in patients with schizophrenia: A phase-1, single-dose, randomized, open-label study. J Clin Pharmacol. 2016;56(3):330–9. https://doi.org/10.1002/jcph.597.

    Article  CAS  PubMed  Google Scholar 

  28. Yee KL, Mittal S, Fan L, et al. Pharmacokinetics, safety and tolerability of long-acting parenteral intramuscular injection formulations of doravirine. J Clin Pharm Ther. 2020;45(5):1098–105. https://doi.org/10.1111/jcpt.13182.

    Article  CAS  PubMed  Google Scholar 

  29. Rajoli RKR, Back DJ, Rannard S, et al. In silico dose prediction for long-acting rilpivirine and cabotegravir administration to children and adolescents. Clin Pharmacokinet. 2018;57(2):255–66. https://doi.org/10.1007/s40262-017-0557-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bosgra S, Van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. 2012;42(December 2011):751–67. https://doi.org/10.3109/10408444.2012.709225.

  31. Shahraz A, Spires J, Dibella JA, et al. Physiologically based pharmacokinetic (PBPK) model for intramuscular injection of aripiprazole, Vol 22(2008):42505. https://www.simulations-plus.com/assets/Shahraz-ISSX-2016-IM-Injection-PBPK-Models.pdf. Accessed 20 Jan 2023.

  32. Lukacova V. What does it take to develop a PBPK model that mimics in vivo behavior of LAIs? Part II. In: Long acting injectables and implantables conference. La Jolla, California; 2020.

  33. Perazzolo S, Shen DD, Ho RJY. Physiologically based pharmacokinetic modeling of 3 HIV drugs in combination and the role of lymphatic system after subcutaneous dosing. Part 2 : Model for the drug-combination nanoparticles. J Pharm Sci. 2022;000:1–13. https://doi.org/10.1016/j.xphs.2021.10.009.

    Article  CAS  Google Scholar 

  34. Perazzolo S, Shireman LM, Shen DD, Ho RJY. Physiologically based pharmacokinetic modeling of 3 HIV drugs in combination and the role of lymphatic system after subcutaneous dosing. Part 1 : Model for the free-drug mixture. J Pharm Sci. 2022;111(2):529–41. https://doi.org/10.1016/j.xphs.2021.10.007.

    Article  CAS  PubMed  Google Scholar 

  35. Mueller S, N; Tian, Shaomin; DeSimone JM. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm. 2015;12(5):1356–65. https://doi.org/10.1021/mp500589c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharan S, Fang L, Lukacova V, Chen X, Hooker AC, Karlsson MO. model-informed drug development for long-acting injectable products : Summary of American College of Clinical Pharmacology Symposium. 2021;20993(July 2020). https://doi.org/10.1002/cpdd.928.

  37. Navas-Bachiller M, Persoons T, D’Arcy DM. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations. Eur J Pharm Sci. 2021;2022(174):106185. https://doi.org/10.1016/j.ejps.2022.106185.

    Article  CAS  Google Scholar 

  38. Zuidema J, Pieters FAJM, Duchateau GSMJE. Release and absorption rate aspects of intramuscularly injected pharmaceuticals. Int J Pharm. 1988;47(1-3):1–12.

    Article  CAS  Google Scholar 

  39. Zuidema J, Oussoren C. Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (II). Int J Pharm. 1994;105:189–207.

    Article  CAS  Google Scholar 

  40. Medlicott NJ, Waldron NA, Foster TP. Sustained release veterinary parenteral products. Adv Drug Deliv Rev. 2004;56(10):1345–65. https://doi.org/10.1016/j.addr.2004.02.005.

    Article  CAS  PubMed  Google Scholar 

  41. Faassen Werenfridus Adrianus, Kemperman Gerardus Johannes, Ban Laarhoven, Johannes Hendrikus A. Injectable formulations containing asenapine and method of treatment using same. 2010:12. https://patentimages.storage.googleapis.com/8a/a4/5f/9f8061d1440c92/WO2010149727A2.pdf. Accessed 20 Jan 2023.

  42. Chung S, Kim J, Ban E, Yun J, Park B, Kim A. Solution-mediated phase transformation of aripiprazole : Negating the effect of crystalline forms on dissolution and oral pharmacokinetics. J Pharm Sci. 2020;109(12):3668–77. https://doi.org/10.1016/j.xphs.2020.09.031.

    Article  CAS  PubMed  Google Scholar 

  43. Research C for DE and Product Quality Review Application Numbers 212887Orig1s000 and 212888Orig1s000; 2020. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212887Orig1s000,212888Orig1s000ChemR.pdf. Accessed 20 Jan 2023.

  44. Mcdonnell DP, Detke HC, Bergstrom RF, et al. Post-injection delirium / sedation syndrome in patients with schizophrenia treated with olanzapine long-acting injection, II : investigations of mechanism. 2010:1–10.

  45. Zhu W, Sabatino P, Govoreanu R, Verbruggen K, Martins JC, Van Der MP. Colloids and Surfaces A : Physicochemical and Engineering Aspects Preferential adsorption of polysorbate 20 molecular species in aqueous paliperidone palmitate suspensions. Colloids Surfaces A Physicochem Eng Asp. 2011;384(1–3):691–7. https://doi.org/10.1016/j.colsurfa.2011.05.043.

    Article  CAS  Google Scholar 

  46. Rao MRP, Chaudhari J, Trotta F, Caldera F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. 2018;19(5):2358–69. https://doi.org/10.1208/s12249-018-1064-6.

    Article  CAS  Google Scholar 

  47. Raoufinia A, Peters-Strickland T, Nylander AG, et al. Aripiprazole once-monthly 400 mg: Comparison of pharmacokinetics, tolerability, and safety of deltoid versus gluteal administration. Int J Neuropsychopharmacol. 2017;20(4):295–304. https://doi.org/10.1093/ijnp/pyw116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kostanski J, Matsuda T, Nerurkar M, Naringrekar V. Controlled release sterile injectable aripiprazole formulation and method. US Patent 803031B2. 2011. https://patentimages.storage.googleapis.com/06/5e/60/e6d45eafdaa4f2/US8030313.pdf

  49. Faassen WA, Huissen KGJH, van Laarhoven JAH. Injectable formulations containing asenapine and method of treatment using same. US Patent 0237561 A1. 2014.

  50. Spreen WR, Margolis DA, Pottage JC. Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS. 2013;8(6):565–71. https://doi.org/10.1097/COH.0000000000000002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Research C for DE and NDA 21–173 Pharmacology Review; 2007. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022173s000PharmR.pdf. Accessed 20 Jan 2023.

  52. Van’t Klooster G, Hoeben E, Borghys H, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54(5):2042–50. https://doi.org/10.1128/AAC.01529-09.

    Article  CAS  PubMed  Google Scholar 

  53. Research C for DE and Application Number 21–866 Clinical Pharmacology and Biopharmaceutics Reviews. Silver Spring, MD; 2005.

  54. Perrin Y. Pharmacokinetic and pharmacodynamic profile of Icatibant. Clin Pharmacol Ther. 2004;75(2):P56. https://doi.org/10.1016/j.clpt.2003.11.212.

    Article  Google Scholar 

  55. Goebel F, Yakovlev A, Pozniak AL, et al. Short-term antiviral activity of TMC278 - A novel NNRTI - In treatment-naive HIV-1-infected subjects. AIDS. 2006;20(13):1721–6. https://doi.org/10.1097/01.aids.0000242818.65215.bd.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Merck & Co., Inc, Rahway, NJ USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley R. Johnson.

Ethics declarations

Conflict of Interest

All authors are full time employees of Merck & Co., Inc, Rahway, NJ USA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.R., Ballard, J.E., Leithead, A. et al. A Retrospective Analysis of Preclinical and Clinical Pharmacokinetics from Administration of Long-Acting Aqueous Suspensions. Pharm Res 40, 1641–1656 (2023). https://doi.org/10.1007/s11095-023-03470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03470-8

Keywords

Navigation