Skip to main content
Log in

Model-Based Evaluation of Drying Kinetics and Solvent Diffusion in Pharmaceutical Thin Film Coatings

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fluid-bed coating processes make it possible to manufacture pharmaceutical products with tuneable properties. The choice of polymer type and coating thickness provides control over the drug release characteristics, and multi-layer pellet coatings can combine several active ingredients or achieve tailored drug release profiles. However, the fluid-bed coating is a parametrically sensitive process due to the simultaneous occurrence of polymer solution spraying and solvent evaporation. Designing a robust fluid-bed coating process requires the knowledge of thin film drying kinetics, which in turn critically depends on an accurate description of concentration-dependent solvent diffusion in the polymer.

Methods

This work presents a mathematical model of thin film drying as an enabling tool for fluid-bed process design. A custom-built benchtop drying cell able to record and evaluate the drying kinetics of a chosen polymeric excipient has been constructed, validated, and used for data collection.

Results

A semi-empirical mathematical model combining heat transfer, mass transfer, and film thickness evolution was formulated and used for estimating the solvent diffusion coefficient and solvent distribution in the polymer layer. The combined experimental and computational methodology was then used for analysing the drying kinetics of common polymeric excipients: poly(vinylpyrrolidone) and two grades of hydroxypropyl methylcellulose.

Conclusions

The experimental setup together with the mathematical model represents a valuable tool for predictive modeling of pharmaceutical coating processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allen L, Zanowiak P. Pharmaceutical dosage forms. In: Ullmann's encyclopedia of industrial chemistry; 2014. p. 1–45.

    Google Scholar 

  2. Teunou E, Poncelet D. Batch and continuous fluid bed coating – review and state of the art. J Food Eng. 2002;53(4):325–40.

    Article  Google Scholar 

  3. Caccavo D, Lamberti G, Cafaro MM, Barba AA, Kazlauske J, Larsson A. Mathematical modelling of the drug release from an ensemble of coated pellets. Br J Pharmacol. 2017;174(12):1797–809.

    Article  CAS  Google Scholar 

  4. Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: a review. J Control Release. 2018;283:1–19.

    Article  CAS  Google Scholar 

  5. Felton LA. Film coating of oral solid dosage forms. Encyclopedia of pharmaceutical technology 2007;3:1729-1747.

  6. Toschkoff G, Khinast JG. Mathematical modeling of the coating process. Int J Pharm. 2013;457(2):407–22.

    Article  CAS  Google Scholar 

  7. Heinrich S, Dosta M, Antonyuk S. Chapter two - multiscale analysis of a coating process in a Wurster fluidized bed apparatus. In: Marin GB, Li J, editors. Advances in chemical engineering, vol. 46: Academic Press; 2015. p. 83–135.

    Google Scholar 

  8. Kolář J, Kovačík P, Choděrová T, Grof Z, Štěpánek F. Optimization of Wurster fluid bed coating: mathematical model validated against pharmaceutical production data. Powder Technol. 2021;386:505–18.

    Article  Google Scholar 

  9. Hemati M, Cherif R, Saleh K, Pont V. Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 2003;130(1):18–34.

    Article  CAS  Google Scholar 

  10. Böhling P, Khinast JG, Jajcevic D, Davies C, Carmody A, Doshi P, Am Ende MT, Sarkar A. Computational fluid dynamics-discrete element method modeling of an industrial-scale Wurster coater. J Pharm Sci. 2019;108(1):538–50.

    Article  Google Scholar 

  11. Jiang Z, Rieck C, Bück A, Tsotsas E. Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach. Chem Eng Sci. 2020;211:115289.

    Article  CAS  Google Scholar 

  12. Vrentas JS, Duda JL, Hou AC. Evaluation of theories for diffusion in polymer–solvent systems. J Polym Sci Polym Phys Ed. 1985;23(12):2469–75.

    Article  CAS  Google Scholar 

  13. Vrentas JS, Vrentas CM. Drying of solvent-coated polymer films. J Polym Sci B Polym Phys. 1994;32(1):187–94.

    Article  CAS  Google Scholar 

  14. Susarla R, Sievens-Figueroa L, Bhakay A, Shen Y, Jerez-Rozo JI, Engen W, Khusid B, Bilgili E, Romañach RJ, Morris KR, Michniak-Kohn B, Davé RN. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. Int J Pharm. 2013;455(1):93–103.

    Article  CAS  Google Scholar 

  15. Naseri AT, Cetindag E, Forte J, Bilgili E, Davé RN. Convective drying kinetics of polymer strip films loaded with a BCS class II drug. AAPS PharmSciTech. 2019;20(2):40.

    Article  CAS  Google Scholar 

  16. Velaga SP, Nikjoo D, Vuddanda PR. Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS PharmSciTech. 2018;19(1):425–35.

    Article  CAS  Google Scholar 

  17. Mesbah A, Ford Versypt AN, Zhu X, Braatz RD. Nonlinear model-based control of thin-film drying for continuous pharmaceutical manufacturing. Ind Eng Chem Res. 2014;53(18):7447–60.

    Article  CAS  Google Scholar 

  18. Singhal UM, Dixit R, Arya RK. Drying of multilayer polymeric coatings, part I: an experimental study. Dry Technol. 2014;32(14):1727–40.

    Article  CAS  Google Scholar 

  19. Routh AF. Drying of thin colloidal films. Rep Prog Phys. 2013;76(4):046603.

    Article  Google Scholar 

  20. Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romañach RJ, Michniak-Kohn B, Iqbal Z, Bilgili E, Davé RN. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012;423(2):496–508.

    Article  CAS  Google Scholar 

  21. Allanic N, Salagnac P, Glouannec P, Guerrier B. Estimation of an effective water diffusion coefficient during infrared-convective drying of a polymer solution. AICHE J. 2009;55(9):2345–55.

    Article  CAS  Google Scholar 

  22. Räderer M, Besson A, Sommer K. A thin film dryer approach for the determination of water diffusion coefficients in viscous products. Chem Eng J. 2002;86(1):185–91.

    Article  Google Scholar 

  23. Price PE Jr, Cairncross RA. Optimization of single-zone drying of polymer solution coatings using mathematical modeling. J Appl Polym Sci. 2000;78(1):149–65.

    Article  CAS  Google Scholar 

  24. Guerrier B, Bouchard C, Allain C, Bénard C. Drying kinetics of polymer films. AICHE J. 1998;44(4):791–8.

    Article  CAS  Google Scholar 

  25. Price PE Jr, Wang S, Romdhane IH. Extracting effective diffusion parameters from drying experiments. AICHE J. 1997;43(8):1925–34.

    Article  CAS  Google Scholar 

  26. Kemp IC. Application of mechanistic drying models in pharmaceuticals and other industries. Dry Technol. 2019;37(5):600–11.

    Article  Google Scholar 

  27. Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2(20):4740–2.

    Article  CAS  Google Scholar 

  28. Bergman R, Sundelöf L-O. Diffusion transport and thermodynamic properties in concentrated water solutions of hydroxypropyl cellulose at temperatures up to phase separation. Eur Polym J. 1977;13(11):881–9.

    Article  CAS  Google Scholar 

  29. Gao P, Fagerness PE. Diffusion in HPMC gels. I. Determination of drug and water diffusivity by pulsed-field-gradient spin-Echo NMR. Pharm Res. 1995;12(7):955–64.

    Article  CAS  Google Scholar 

  30. Trotzig C, Abrahmsén-Alami S, Maurer FHJ. Transport properties of water in hydroxypropyl methylcellulose. Eur Polym J. 2009;45(10):2812–20.

    Article  CAS  Google Scholar 

  31. Buera MDP, Levi G, Karel M. Glass transition in poly(vinylpyrrolidone): effect of molecular weight and diluents. Biotechnol Prog. 1992;8(2):144–8.

    Article  CAS  Google Scholar 

  32. Nielsen LE, Landel RF. Mechanical properties of polymers and composites. Second ed: Taylor & Francis; 1993.

    Google Scholar 

  33. Alsoy S, Duda JL. Modeling of multilayer drying of polymer films. J Polym Sci B Polym Phys. 1999;37(14):1665–75.

    Article  CAS  Google Scholar 

Download references

Funding

F.Š. and A.Z. would like to thank the Czech Science Foundation (EXPRO grant no. 19-26127X) for financial support. O.N. and J.K. would like to acknowledge support by The Pharmaceutical Applied Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

O.N.: Experimental design, data acquisition, model development, data analysis, manuscript writing.

J.K.: Model development, data analysis, manuscript writing.

A.Z.: Experimental design, data acquisition, manuscript writing.

F.Š.: Conception, supervision, manuscript writing.

Corresponding author

Correspondence to František Štěpánek.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 2.33 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navrátil, O., Kolář, J., Zadražil, A. et al. Model-Based Evaluation of Drying Kinetics and Solvent Diffusion in Pharmaceutical Thin Film Coatings. Pharm Res 39, 2017–2031 (2022). https://doi.org/10.1007/s11095-022-03352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03352-5

KEY WORDS

Navigation