Skip to main content
Log in

Efficient Evaluation of In Vivo Performance in Human for Generic Formulation by Novel Dissolution-Absorption Prediction (DAP) Workflow

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The pharmaceutical bioequivalence of generic medicines must be confirmed with corresponding original drugs. Although the in vitro dissolution tests are required, results of the mandatory in vitro study do not necessarily reflect the in vivo performance after oral administration. Then, we have tried to develop the novel “Dissolution-Absorption Prediction (DAP) workflow” to evaluate the in vivo performance of generic medicines.

Methods

The DAP workflow consists of an “In vitro two-cell connected dissolution (TCCD) system” mimicking the changes in the luminal pH associated with gastrointestinal transit of medicines, “Evaluation of pharmacokinetics of active pharmaceutical ingredient (API)” and “Prediction of plasma concentration–time profile”. TCCD system-evaluated dissolution kinetics of APIs from generic formulations and pharmacokinetic parameters based on human data regarding the original drugs were used to calculate the plasma concentration–time profiles of APIs after the oral administration of generic medicines.

Results

The mandatory in vitro dissolution tests indicated that the dissolution properties of valsartan (BCS class II) and fexofenadine (BCS class III/IV) in generic formulations did not coincide with those in the corresponding original formulations. The TCCD system provided the very similar dissolution kinetics for the generic and original formulations for the two APIs. Plasma concentration–time profiles evaluated utilizing the dissolution profiles obtained by the TCCD system were in good agreement with the observed profiles for both the generic and original formulations for each API.

Conclusions

The DAP workflow would be valuable for estimating the in vivo performance of generic formulation and deducing their bioequivalence with the original formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nayak AK, Maji R, Das B. Gastroretentive drug delivery systems: a review. Asian J Pharm Clin Res. 2010;3(1):2–10.

    CAS  Google Scholar 

  2. Lipinski AC. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49. https://doi.org/10.1016/S1056-8719(00)00107-6.

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka Y, Kubota A, Matsuo A, Kawakami A, Kamizi H, Mochigoe A, et al. Effect of absorption behavior of solubilizers on drug dissolution in the gastrointestinal tract: evaluation based on in vivo luminal concentration-time profile of cilostazol, a poorly soluble drug, and solubilizers. J Pharm Sci. 2016;105(9):2825–31. https://doi.org/10.1016/j.xphs.2016.02.026.

    Article  CAS  PubMed  Google Scholar 

  4. Bonferoni CM, Ferrari F, Rossi S, Caramella CM. The role of particle size in drug release and absorption. Particulate Products. 2014; p. 323–41. https://doi.org/10.1007/978-3-319-00714-4_11.

  5. Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1–2):56–64. https://doi.org/10.1016/j.jconrel.2005.11.013.

    Article  CAS  PubMed  Google Scholar 

  6. Himawan A, Djide NJN, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, et al. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci. 2022;168:106057. https://doi.org/10.1016/j.ejps.2021.106057.

    Article  CAS  PubMed  Google Scholar 

  7. Beg S, Swain S, Singh HP, Patra CN, Rao MEB. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13(4):1416–27. https://doi.org/10.1208/s12249-012-9865-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kushner J, Lamba M, Stock T, Ronnie W, Nemeth MA, Alvey C, et al. Development and validation of a level a in-vitro in-vivo correlation for tofacitinib modified-release tablets using extrudable core system osmotic delivery technology. Eur J Pharm Sci. 2020;147:105200. https://doi.org/10.1016/j.ejps.2019.105200.

    Article  CAS  PubMed  Google Scholar 

  9. Guideline for Bioequivalence Studies for Formulation Changes of Oral Solid Dosage Forms. https://www.nihs.go.jp/drug/index-E.thml#BE

  10. Pharmaceuticals and Medical Devices Agency. Guideline for Bioequivalence Studies of Generic Products, Attachment 1 of PSEHB/PED Notification No. 0319–1, dated March 19, 2020. https://www.nihs.go.jp/drug/be-guide(e)/2020/GL1_BE_2020.pdf.

  11. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Dissolution testing of immediate release solid oral dosage forms. August 1997. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-immediate-release-solid-oral-dosage-forms.

  12. Haruta S, Kawai K, Nishii R, Jinnouchi S, Ogawara K, Higaki K, et al. Prediction of plasma concentration–time curve of orally administered theophylline based on a scintigraphic monitoring of gastrointestinal transit in human volunteers. Int J Pharm. 2002;233(1–2):179–90. https://doi.org/10.1016/S0378-5173(01)00942-5.

    Article  CAS  PubMed  Google Scholar 

  13. Yu XL, John R, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140(1):111–8. https://doi.org/10.1016/0378-5173(96)04592-9.

    Article  CAS  Google Scholar 

  14. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123–31.

    Article  CAS  Google Scholar 

  15. Culen M, Rezacova A, Jampilek J, Dohnal J. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine. J Pharm Sci. 2013;102(9):2995–3017. https://doi.org/10.1002/jps.23494.

    Article  CAS  PubMed  Google Scholar 

  16. Schiller C, Frohlich CP, Giessman T, Siegmund W, Monnikes H, Hostein N, Weitschies W. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9.

    Article  CAS  Google Scholar 

  17. Malthy JR, Sutherland AD, Sale JP, Shaffer EA. Preoperative oral fluids: is a five-hour fastjustified prior to elective surgery? Anesth Analg. 1986;65:1112–6.

    Google Scholar 

  18. Lydon A, Murray C, McGinley J, Plant R, Duggan F, Shorten G. Cisapride dose not alter gastric volume or pH in patients undergoing ambulatory surgery. Can J Anaesth. 1999;46:1181–4.

    Article  CAS  Google Scholar 

  19. Placidi E, Hoad CL, Marciani L, Gowland PA, Spiller RC. Effects of an osmotic laxative on the distribution of water between the small and large intestine in humans. Gut. 2010;59:a141.

    Article  Google Scholar 

  20. Jin C, Zhao C, Shen D, Dong W, Liu H, He Z. Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating? J Pharm Pharmacol. 2018;70(2):250–8. https://doi.org/10.1111/jphp.12859.

    Article  CAS  PubMed  Google Scholar 

  21. Picazo AR, Martinez-Martinez MT, Colón-Useche S, Iriarte R, Sánchez-Dengra B, González-Álvarez M, et al. In vitro dissolution as a tool for formulation selection: telmisartan two-step IVIVC. Mol Pharm. 2018;15(6):2307–15. https://doi.org/10.1021/acs.molpharmaceut.8b00153.

    Article  CAS  Google Scholar 

  22. Alkhalidi BA, Al-Ghazawi M, AlKhatib HS, Sallam A. Development of a predictive in vitro dissolution for clarithromycin granular suspension based on in vitro-in vivo correlations. Pharm Dev Technol. 2010;15(3):286–95. https://doi.org/10.3109/10837450903188493.

    Article  CAS  PubMed  Google Scholar 

  23. Vuletić L, Khan MZI, Špoljarić D, Radić M, Cetina-Čižmek B, Filipović-Grčić J. Development of a clinically relevant dissolution method for metaxalone immediate release formulations based on an IVIVC model. Pharm Res. 2018;35(8):163. https://doi.org/10.1007/s11095-018-2434-1.

    Article  CAS  PubMed  Google Scholar 

  24. Kim TH, Shin S, Jeong SW, Lee JB, Shin BS. Physiologically relevant in vitro-in vivo correlation (IVIVC) approach for sildenafil with site-dependent dissolution. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11060251.

  25. Chen R, Blanchard A, Kushner J, Harrignton B, Liu J, DeMatteo V. Developing a biorelevant dissolution method for an extrudable core system (ECS) osmotic tablet. AAPS PharmSciTech. 2022;23:5. https://doi.org/10.1208/s12249-021-02110-x.

    Article  CAS  Google Scholar 

  26. Okumu A, DiMaso M, Löbenberg R. Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharm Res. 2008;25(12):2778–85.

    Article  CAS  Google Scholar 

  27. Ruff A, Fiolka T, Kostewicz ES. Prediction of ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci. 2017;100:42–55.

    Article  CAS  Google Scholar 

  28. Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. In vitro dissolution-methodology, mini-gastrointestinal simulator (mGIS), predicts better in vivo dissolution of weak base drug, dasatinib. Eur J Pharm Sci. 2015;76:203–12.

    Article  CAS  Google Scholar 

  29. Patel S, Zhu W, Xia B, Sharma N, Hermans A, Ehrick JD, Kesisoglou F, Pennington J. Integration of precipitation kinetics from an in vitro, multicompartment transfer system and mechanistic oral absorption modeling for pharmacokinetic prediction of weakly basic drugs. J Pharm Sci. 2019;108:574–83.

    Article  CAS  Google Scholar 

  30. Lopes de Castro LM, de Souza J, Caldeira TG, Mapa B, Soares AFM, Pegorelli BG, et al. The evaluation of valsartan biopharmaceutics properties. Curr Drug Res Rev. 2020;12(1):52–62. https://doi.org/10.2174/2589977511666191210151120.

    Article  CAS  Google Scholar 

  31. Ono A, Sugano K. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations. Eur J Pharm Sci. 2014;64:37–43. https://doi.org/10.1016/j.ejps.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  32. Rosa LS, Marques-Marinho FD, Braga SL, de Souza J. Equilibrium solubility study to determine fexofenadine hydrochloride bcs class and challenges in establishing conditions for dissolution profiles applied to suspension. Braz J Pharm Sci. 2020;56(1–10):e17737.

    Article  CAS  Google Scholar 

  33. Johnson LR. Salivary secretion. In: Johnson LR, editor. Gastrointestinal physiology. St. Louis: Mosby; 1997. p. 59–68.

    Google Scholar 

  34. Evonik Industries AG. https://healthcare.evonik.com/en/pharmaceuticals/oral-drug-delivery/oral-excipients/eudragit-portfolio/immediate-release. Accessed 16 Jan 2022.

  35. Steingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P, et al. Effects of posture on the physiology of gastric emptying: a magnetic resonance imaging study. Scand J Gastroenterol. 2006;41(10):1155–64. https://doi.org/10.1080/00365520600610451.

    Article  PubMed  Google Scholar 

  36. Yamaoka K, Nakagawa T. A nonlinear least squares program based on differential equations, MULTI (RUNGE), for microcomputers. J Pharmacobio-Dyn. 1983;6(8):595–606. https://doi.org/10.1248/bpb1978.6.595.

    Article  CAS  PubMed  Google Scholar 

  37. Valsartan, 2013. Drug Information from the manufacture. https://www.pmda.go.jp/PmdaSearch/iyakuDetail/GeneralList/2149041F1. Accessed 16 Jan 2022.

  38. Sester C, Ofridam F, Lebaz N, Gagniere E, Mangin D, Elaissari A. pH-sensitive methacrylic acid-methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri-copolymer Eudragit E100. Polymer Adv Technol. 2020;31:440–50.

    Article  CAS  Google Scholar 

  39. Singh AP, Siddiqui J, Diosady LL. Characterizing the pH-dependent release kinetics of food-grade spray drying encapsulated iron microcapsules for food fortification. Food Bioprocess Technol. 2018;11:435–46.

    Article  Google Scholar 

  40. Elder D, Symonds J. Dissolution testing in the modern world. Eur Pharm Rev. 2016; 29 Feb. https://www.europeanpharmaceuticalreview.com/article/39248/dissolution-test-ing-in-the-modern-world/.

  41. Klein S. The mini paddle apparatus-a useful tool in the early developmental stage? Experiences with immediate-release dosage forms. Dissolution Tech. 2006; Nov. https://doi.org/10.14227/DT130406P6.

Download references

Acknowledgments

This study was performed as the joint research between Towa Pharmaceutical Co., Ltd. and Okayama University.

Author information

Authors and Affiliations

Authors

Contributions

Motoki Onishi; Conceptualization, Methodology, Writing, Acquisition, Analysis and interpretation of data: Kozo Tagawa; Conceptualization, Methodology: Maiko Jiko; Acquisition of data: Kayo Koike; Acquisition of data: Masato Maruyama; Interpretation of data: Hidetoshi Hashizume; Interpretation of data: Kazuhide Imagaki; Supervision: Kazutaka Higaki; Conceptualization, Methodology, Writing, Visualization, interpretation of data, Supervision.

Corresponding author

Correspondence to Kazutaka Higaki.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, M., Tagawa, K., Jiko, M. et al. Efficient Evaluation of In Vivo Performance in Human for Generic Formulation by Novel Dissolution-Absorption Prediction (DAP) Workflow. Pharm Res 39, 2203–2216 (2022). https://doi.org/10.1007/s11095-022-03337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03337-4

Keywords

Navigation