Skip to main content

Advertisement

Log in

Effect of Excessive Serotonin on Pharmacokinetics of Cephalexin after Oral Administration: Studies with Serotonin-Excessive Model Rats

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Serotonin (5-HT) is important for gastrointestinal functions, but its role in drug absorption remains to be clarified. Therefore, the pharmacokinetics and oral absorption of cephalexin (CEX) were examined under 5-HT-excessive condition to understand the role of 5-HT.

Methods

5-HT-excessive rats were prepared by multiple intraperitoneal dosing of 5-HT and clorgyline, an inhibitor for 5-HT metabolism, and utilized to examine the pharmacokinetics, absorption behavior and the intestinal permeability for CEX.

Results

Higher levels of 5-HT in brain, plasma and small intestines were recognized in 5-HT-excessive rats, where the oral bioavailability of CEX was significantly enhanced. The intestinal mucosal transport via passive diffusion of CEX was significantly increased, while its transport via PEPT1 was markedly decreased specifically in the jejunal segment, which was supported by the decrease in PEPT1 expression on brush border membrane (BBM) of intestinal epithelial cells. Since no change in antipyrine permeability and significant increase in FITC dextran-4 permeability were observed in 5-HT-excessive rats, the enhanced permeability for CEX would be attributed to the opening of tight junction, which was supported by the significant decrease in transmucosal electrical resistance. In 5-HT-excessive rats, furthermore, total body clearance of CEX tended to be larger and the decrease in PEPT2 expression on BBM in kidneys was suggested to be one of the reasons for it.

Conclusions

5-HT-excessive condition enhanced the oral bioavailability of CEX in rats, which would be attributed to the enhanced permeability across the intestinal mucosa via passive diffusion through the paracellular route even though the transport via PEPT1 was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol. 2016;417:158–67.

    Article  CAS  PubMed  Google Scholar 

  2. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.

    Article  CAS  PubMed  Google Scholar 

  3. Wood JD. Physiology of the enteric nervous system. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven; 1994. p. 423–82.

    Google Scholar 

  4. Weisbrodt NW. Motility of the small intestine. In: Johnson LR, editor. Gastrointestinal physiology. St. Louis: Mosby; 1997. p. 43–50.

    Google Scholar 

  5. Kunze WAA, Furness JB. The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol. 1999;61:117–42.

    Article  CAS  PubMed  Google Scholar 

  6. Spencer NJ, Bywater RA. Enteric nerve stimulation evokes a premature colonic migrating motor complex in mouse. Neurogastroenterol Motil. 2002;14:657–65.

    Article  CAS  PubMed  Google Scholar 

  7. Nylander O, Hällgren A, Sababi M. Cox inhibition excites enteric nerves that affect motility, alkaline secretion, and permeability in rat duodenum. Am J Phys. 2001;281:G1169–G12178.

    CAS  Google Scholar 

  8. Chiba T, Bharucha AE, Thomforde GM, Kost LJ, Phillips SF. Model of rapid gastrointestinal transit in dogs: effects of muscarinic antagonists and a nitric oxide synthase inhibitor. Neurogastroenterol Motil. 2002;14:535–41.

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi H, Suzuki T, Yamamoto T, Suzuki Y. Cholinergic inhibition of electrogenic sodium absorption in the guinea pig distal colon. Am J Phys. 2003;284:G617–28.

    CAS  Google Scholar 

  10. Cooke HJ, Reddix RA. Neural regulation of intestinal electrolyte transport. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven; 1994. p. 2083–132.

    Google Scholar 

  11. Lebrun F, Francois A, Vergnet M, Lebaron-Jacobs L, Bourmelon P, Griffiths NM. Ionizing radiation stimulates muscarinic regulation of rat intestinal mucosal function. Am J Phys. 1998;275:G1333–40.

    CAS  Google Scholar 

  12. Hörger S, Schultheiß G, Diener M. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am J Phys. 1998;275:G1367–76.

    Google Scholar 

  13. Hayden UL, Carey HV. Neural control of intestinal ion transport and paracellular permeability is altered by nutritional status. Am J Phys. 2000;278:R1589–94.

    CAS  Google Scholar 

  14. Green BT, Brown DR. Active bicarbonate-dependent secretion evoked by 5-hydroxy-tryptamine in porcine ileal mucosa is mediated by opioid-sensitive enteric neurons. Eur J Pharmacol. 2002;451:185–90.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Martínez V, Kimura H, Taché Y. 5-Hydroxytryptophan activates colonic myenteric neurons and propulsive motor function through 5-HT4 receptors in conscious mice. Am J Phys. 2007;292:G419–28.

    CAS  Google Scholar 

  16. De Giorgio R, Barbara G, Furness JB, Tonini M. Novel therapeutic targets for enteric nervous system disorders. Trends Pharmacol Sci. 2007;28:473–81.

    Article  PubMed  Google Scholar 

  17. Li Z, Chalazonitis A, Huang Y-Y, Mann JJ, Margolis KG, Yang QM, Kim DO, Côté F, Mallet J, Gershon MD. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011;31:8998–9009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kadowaki M, Nagakura Y, Tomoi M, Mori J, Kohsaka M. Effect of FK1052, a potent 5-hydroxytryptamine3 and potent 5-hydroxytryptamine4 receptor dual antagonist, on colonic function in vivo. J Pharmacol Exp Ther. 1993;66:74–80.

    Google Scholar 

  19. Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015;213:561–74.

    Article  CAS  Google Scholar 

  20. Walsh KT, Zemper AE. The enteric nervous system for epithelial researchers: basic anatomy, techniques, and interactions with the epithelium. Cell Mol Gastroenterol Hepatol. 2019;8:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atkinson W, Lockhart S, Whorwell PJ, Keevil B, Houghton LA. Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterol. 2006;130:34–43.

    Article  CAS  Google Scholar 

  22. Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, Salerni B, Geboes K. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil. 2008;20:1009–16.

    Article  CAS  PubMed  Google Scholar 

  23. Mogilevski T, Burgell R, Aziz Q, Gibson PR. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther. 2019;50:720–37.

    Article  PubMed  Google Scholar 

  24. Spiller R. Serotonin and GI clinical disorders. Neuropharmacol. 2008;55:1072–80.

    Article  CAS  Google Scholar 

  25. Magro F, Vieira-Coelho MA, Fraga S, Serrao MP, Veloso FT, Ribeiro T, Soares-da-Silva P. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig Dis Sic. 2002;47:216–24.

    Article  CAS  Google Scholar 

  26. Haugen M, Dammen R, Svejda B, Gustafsson BI, Pfragner R, Modlin I, Kidd M. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, Laboisse CL, Galmiche JP, Jarry A. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1028–36.

    Article  CAS  PubMed  Google Scholar 

  28. Higaki K, Sone M, Ogawara K, Kimura T. Regulation of drug absorption from small intestine by enteric nervous system I: a poorly absorbable drug via passive diffusion. Drug Metab Pharmacokin. 2004;19:198–205.

    Article  CAS  Google Scholar 

  29. Hiraoka H, Kimura N, Furukawa Y, Ogawara K, Kimura T, Higaki K. Up-regulation of P-glycoprotein expression in small intestine under chronic serotonin-depleted conditions in rats. J Pharmacol Exp Ther. 2005;312:248–55.

    Article  CAS  PubMed  Google Scholar 

  30. Kimoto T, Takanashi M, Mukai H, Ogawara K, Kimura T, Higaki K. Effect of adrenergic stimulation on drug absorption via passive diffusion in Caco-2 cells. Int J Pharm. 2009;368:31–6.

    Article  CAS  PubMed  Google Scholar 

  31. Mukai H, Takanashi M, Ogawara K, Maruyama M, Higaki K. Possible regulation of P-glycoprotein function by adrenergic agonists in a vascular-luminal perfused preparation of small intestine. J Pharm Sci. 2021;110:3889–95.

    Article  CAS  PubMed  Google Scholar 

  32. Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev. 2002;54:315–28.

    Article  CAS  PubMed  Google Scholar 

  33. Nishijima K, Yoshino T, Ishiguro T. Risperidone counteracts lethality in an animal model of the serotonin -excessive. Psychopharmacol. 2000;150:9–14.

    Article  Google Scholar 

  34. Squires LN, Talbot KN, Rubakhin SS, Sweedler JV. Serotonin catabolism in the central and enteric nervous systems of rats upon induction of serotonin -excessive. J Neurochem. 2007;103:174–80.

    CAS  PubMed  Google Scholar 

  35. Walter DJ, Peter J-U, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M. Synthesis of serotonin by a second tryptophan hytdroxylase isoform. Science. 2003;299:76.

    Article  Google Scholar 

  36. Hironaka T, Itokawa S, Ogawara K, Higaki K, Kimura T. Quantitative evaluation of PEPT1 contribution to oral absorption of cephalexin in rats. Pharm Res. 2009;26:40–50.

    Article  CAS  PubMed  Google Scholar 

  37. Pan X, Terada T, Irie M, Saito H, Inui K. Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Phys. 2002;283:G57–64.

    CAS  Google Scholar 

  38. Pan X, Terada T, Okuda M, Inui K. The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats. J Nutr. 2004;134:2211–5.

    Article  CAS  PubMed  Google Scholar 

  39. Pan X, Terada T, Okuda M, Inui K. Altered diurnal rhythm of intestinal peptide transporter by fasting and its effects on the pharmacokinetics of ceftibuten. J Pharmacol Exp Ther. 2003;307:626–32.

    Article  CAS  PubMed  Google Scholar 

  40. Lakshmana MK, Raju TR. An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat. Anal Biochem. 1997;15:166–70.

    Article  Google Scholar 

  41. Kessler M, Acuto O, Storelli C, Murer H, Müller M, Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicle from small intestinal brush border membranes. Biochim Biophys Acta. 1978;506:136–54.

    Article  CAS  PubMed  Google Scholar 

  42. Wilfong RF, Neville DM Jr. The isolation of a brush border membrane fraction from rat kidney. J Biol Chem. 1970;245:6106–13.

    Article  CAS  PubMed  Google Scholar 

  43. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kadono K, Yokoe J, Ogawara K, Higaki K, Kimura T. Analysis and prediction of absorption behavior for theophylline orally administered as powders based on gastrointestinal-transit-absorption (GITA) model. Drug Metab Pharmacokinet. 2002;17:307–15.

    Article  CAS  PubMed  Google Scholar 

  45. Haruta S, Kawai K, Jinnouchi S, Ogawara K, Higaki K, Tamura S, Arimori K, Kimura T. Evaluation of absorption kinetics of orally administered theophylline in rats based on gastrointestinal transit monitoring by gamma scintigraphy. J Pharm Sci. 2001;90:464–73.

    Article  CAS  PubMed  Google Scholar 

  46. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abrahamsson B, Alpsten M, Hugosson M, Jonsson ULFE, Sundgren M, Svenheden A, Tölli J. Absorption, gastrointestinal transit, and tablet erosion of felodipine extended-release (ER) tablets. Pharm Res. 1993;10:709–14.

    Article  CAS  PubMed  Google Scholar 

  48. Peh KK, Yuen KH. Indirect gastrointestinal transit monitoring and absorption of theophylline. Int J Pharm. 1996;139:95–103.

    Article  CAS  Google Scholar 

  49. Tuleu C, Andrieux C, Boy P, Chaumeil JC. Gastrointestinal transit of pellets in rats: effect of size and density. Int J Pharm. 1999;180:123–31.

    Article  CAS  PubMed  Google Scholar 

  50. Devereux JE, Newton JM, Short MB. The influence of density on the gastrointestinal transit of pellets. J Pharm Pharmacol. 1990;42:500–1.

    Article  CAS  PubMed  Google Scholar 

  51. Hinder RA, Kelly KA. Canine gastric emptying of solids and liquids. Am J Phys. 1977;233:E335–40.

    CAS  Google Scholar 

  52. Camilleri M, Malagelada JR, Brown ML, Becker G. Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Phys. 1985;249:G580–5.

    CAS  Google Scholar 

  53. Sawamoto T, Haruta S, Kurosaki Y, Higaki K, Kimura T. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol. 1997;49:450–7.

    Article  CAS  PubMed  Google Scholar 

  54. Haruta S, Kawai K, Nishii R, Jinnouchi S, Ogawara K, Higaki K, Tamura S, Arimori K, Kimura T. Prediction of plasma concentration – time curve of orally administered theophylline based on a scintigraphic monitoring of gastrointestinal transit in human volunteers. Int J Pharm. 2002;233:179–90.

    Article  CAS  PubMed  Google Scholar 

  55. Fujioka Y, Metsugi Y, Ogawara K, Higaki K, Kimura T. Evaluation of in vivo dissolution behavior and GI transit of griseofulvin, a BCS class II drug. Int J Pharm. 2008;352:36–43.

    Article  CAS  PubMed  Google Scholar 

  56. Yamaoka K, Tanigawara Y, Tanaka H, Uno T. A pharmacokinetic analysis program (MULTI) for microcomputer. J Pharmacobio-Dyn. 1981;4:879–85.

    Article  CAS  PubMed  Google Scholar 

  57. Gill RK, Pant N, Saksena S, Singla A, Nazir TM, Vohwinkel L, Turner JR, Goldstein J, Alrefal WA, Dudeja PK. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am J Physiol Gastrointest Liver Physiol. 2008;294:G254–62.

    Article  CAS  PubMed  Google Scholar 

  58. Nakatani Y, Sato-Suzuki I, Tsujino N, Nakasato A, Seki Y, Fumoto M, Arita H. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur J Neurosci. 2008;27:2466–72.

    Article  PubMed  Google Scholar 

  59. Wakayama K, Ohtsuki S, Takanaga H, Hosoya K, Terasaki T. Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res. 2002;44:173–80.

    Article  CAS  PubMed  Google Scholar 

  60. Chryssafidis P, Tsekouras AA, Macheras P. Re-writing oral pharmacokinetics using physiologically based finite time pharmacokinetic (PBFTPK) models. Pharm Res. 2022;39:691–701.

    Article  CAS  PubMed  Google Scholar 

  61. Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, MADARA JL. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Phys Cell Phys. 1997;273:C1378–85.

    CAS  Google Scholar 

  62. Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119:2095–106.

    Article  CAS  PubMed  Google Scholar 

  63. Beattie DT, Smith JAM. Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:181–203.

    Article  CAS  Google Scholar 

  64. Iceta R, Mesonero JE, Aramayona JJ, Alcalde AI. Expression of 5-HT1A and 5-HT7 receptors in Caco-2 cells and their role in the regulation of serotonin transporter activity. J Physiol Pharmacol. 2009;60:147–64.

    Google Scholar 

  65. Assender JW, Irenius E, Fredholm BB. 5-Hydroxytryptamine, angiotensin and bradykinin transiently increase intracellular calcium concentrations and PKC-α activity, but do not induce mitogenesis in human vascular smooth muscle cells. Acta Physiol Scand. 1997;160:207–17.

    Article  CAS  PubMed  Google Scholar 

  66. Spiller R. Serotonergic modulating drugs for functional gastrointestinal diseases. Br J Clin Pharmacol. 2002;54:11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tuo B-G, Sellers Z, Paulus P, Barrett KE, Isenberg JI. 5-HT induces duodenal mucosal bicarbonate secretion via cAMP- and Ca2+-dependent signaling pathways and 5-HT4 receptors in mice. Am J Physiol Gastrointest Liver Physiol. 2004;286:G444–51.

    Article  CAS  PubMed  Google Scholar 

  68. Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol. 2009;587:195–210.

    Article  CAS  PubMed  Google Scholar 

  69. Lee VHL. Membrane transporters. Eur J Pharm Sci. 2000;11(sup2):S41–50.

    Article  CAS  PubMed  Google Scholar 

  70. Berlioz F, Maoriet J-J, Paris H, Laburthe M, Farinotti R, Rozé C. α2-adrenergic receptors stimulate oligopeptide transport in a huma intestinal cell line. J Pharmacol Exp Ther. 2000;294:466–72.

    CAS  PubMed  Google Scholar 

  71. Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Turner SZ, Ramaswamy JR, K, Dudeja PK. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterol. 2005;128:962–74.

    Article  CAS  Google Scholar 

  72. Amin MR, Ghannad L, Othman A, Gill RK, Dudeja PK, Ramaswamy K, Malakooti J. Transcriptional regulation of the human Na+/H+ exchanger NHE3 by serotonin in intestinal epithelial cells. Biochem Biophys Res Commun. 2009;382:620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spohn SN, Mawe GM. Non-conventional features of peripheral serotonin signaling – the gut and beyond. Nat Rev Gastroenterol Hepatol. 2017;14:412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function. Phys Rep. 2019;7:e14278.

    CAS  Google Scholar 

  76. Park CJ, Amrenia SJ, Shaughnessy MP, Greig CJ, Cowles RA. Potentiation of serotonin signaling leads to increased carbohydrate and lipid absorption in the murine small intestine. J Pediatr Surg. 2019;54:1245–9.

    Article  PubMed  Google Scholar 

  77. Haruta S, Iwasaki N, Ogawara K, Higaki K, Kimura T. Absorption behavior of orally administered drugs in rats treated with propantheline. J Pharm Sci. 1998;87:1081–5.

    Article  CAS  PubMed  Google Scholar 

  78. Pineiro-Carrero VM, Clench MH, Davis RH, Andres JM, Franzini DA, Mathias JR. Intestinal motility changes in rats after enteric serotonergic neuron destruction. Am J Physiol Gastrointest Liver Physiol. 1991;260:G232–9.

    Article  CAS  Google Scholar 

  79. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, Crowell MD, Sharkey KA, Gershon MD, Mawe GM, Moses PL. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterol. 2004;126:1657–64.

    Article  CAS  Google Scholar 

  80. Nakanishi T, Fukushi A, Sato M, Yoshifuji M, Gose T, Shirasaka Y, Ohe K, Kobayashi M, Kawai K, Tamai I. Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture. Mol Pharm. 2011;8:2142–50.

    Article  CAS  PubMed  Google Scholar 

  81. Wenzel U, Diehl D, Herget M, Kuntz S, Daniel H. Regulation of the high-affinity H+/peptide cotransporter in renal LLC-PK1 cells. J Cell Physiol. 1999;178:341–8.

    Article  CAS  PubMed  Google Scholar 

  82. Gibbs WS, Collier JB, Morris M, Beeson CC, Megyesi J, Schnellmann RG. 5-HT1F receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. Am J Physiol Ren Physiol. 2018;315:F1119–28.

    Article  CAS  Google Scholar 

  83. Hamasaki Y, Doi K, Maeda-Mamiya R, Ogasawara E, Katagiri D, Tanaka T, Yamamoto T, Sugaya T, Nangaku M, Noiri E. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Ren Physiol. 2013;305:F1796–803.

    Article  CAS  Google Scholar 

  84. Terada T, Inui K. Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol. 2007;73:440–9.

    Article  CAS  PubMed  Google Scholar 

  85. Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol. 2008;60:543–85.

    Article  CAS  PubMed  Google Scholar 

  86. Shimizu R, Sukegawa T, Tsuda Y, Itoh T. Quantitative prediction of oral absorption of PEPT1 substrates based on in vitro uptake into Caco-2 cells. Int J Pharm. 2008;354:104–10.

    Article  CAS  PubMed  Google Scholar 

  87. Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M. Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol. 2016;90:1555–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the grant-in-aid for Scientific Research (C) from the Japan Society for the Promotion of Science (KH).

Author information

Authors and Affiliations

Authors

Contributions

Shun Nakashima; Methodology, Writing, Acquisition, Analysis and interpretation of data: Takeharu Iwamoto; Acquisition, Analysis and interpretation of data: Masashi Takanashi; Acquisition of data: Ken-ichi Ogawara; Interpretation of data: Masato Maruyama; Interpretation of data: Kazutaka Higaki; Conceptualization, Methodology, Writing, Visualization, interpretation of data, Supervision.

Corresponding author

Correspondence to Kazutaka Higaki.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, S., Iwamoto, T., Takanashi, M. et al. Effect of Excessive Serotonin on Pharmacokinetics of Cephalexin after Oral Administration: Studies with Serotonin-Excessive Model Rats. Pharm Res 39, 2163–2178 (2022). https://doi.org/10.1007/s11095-022-03325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03325-8

Keywords

Navigation