Skip to main content

Advertisement

Log in

Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Cytoplasmic delivery of bioactives requires the use of strategies such as active transport, electroporation, or the use of nanocarriers such as polymeric nanoparticles, liposomes, micelles, and dendrimers. It is essential to deliver bioactive molecules in the cytoplasm to achieve targeted effects by enabling organelle targeting. One of the biggest bottlenecks in the successful cytoplasmic delivery of bioactives through nanocarriers is their sequestration in the endosomes that leads to the degradation of drugs by progressing to lysosomes. In this review, we discussed mechanisms by which nanocarriers are endocytosed, the mechanisms of endosomal escape, and more importantly, the strategies that can be and have been employed for their escape from the endosomes are summarized. Like other nanocarriers, polymeric micelles can be designed for endosomal escape, however, a careful control is needed in their design to balance between the possible toxicity and endosomal escape efficiency. Keeping this in view, polyion complex micelles, and polymers that have the ability to escape the endosome, are fully discussed. Finally, we provided some perspectives for designing the polymeric micelles for efficient cytoplasmic delivery of bioactive agents through endosomal escape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Joris et al. (112).

Similar content being viewed by others

References

  1. Pei D, Buyanova M. Overcoming endosomal entrapment in drug delivery. Bioconjug Chem. 2019;30:273–83.

    Article  CAS  PubMed  Google Scholar 

  2. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16:1671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salatin S, Maleki Dizaj S, Yari KA. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39:881–90.

    Article  CAS  PubMed  Google Scholar 

  5. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–26.

    Article  CAS  PubMed  Google Scholar 

  6. Wu C, Wu Y, Jin Y, Zhu P, Shi W, Li J, et al. Endosomal/lysosomal location of organically modified silica nanoparticles following caveolae-mediated endocytosis. RSC Adv. 2019;9:13855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, et al. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond). 2015;10:1923–40.

    Article  CAS  Google Scholar 

  8. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151:220–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vermeulen LMP, De Smedt SC, Remaut K, Braeckmans K. The proton sponge hypothesis: Fable or fact? Eur J Pharm Biopharm. 2018;129:184–90.

    Article  CAS  PubMed  Google Scholar 

  10. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible “Proton Sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21:149–57.

    Article  CAS  PubMed  Google Scholar 

  11. Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromol. 2013;14:1732–40.

    Article  CAS  Google Scholar 

  12. Smith SA, Selby LI, Johnston APR, Such GK. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem. 2019;30:263–72.

    Article  CAS  PubMed  Google Scholar 

  13. Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed. 2014;9(Suppl 1):51–63.

    Google Scholar 

  14. Ahmad A, Khan JM, Haque S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie. 2019;160:61–75.

    Article  CAS  PubMed  Google Scholar 

  15. Wang M, Li J, Dong S, Cai X, Simaiti A, Yang X, et al. Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction. Part Fibre Toxicol. 2020;17:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, et al. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomed. 2017;12:809–25.

    Article  CAS  Google Scholar 

  17. Grandinetti G, Ingle NP, Reineke TM. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: implications for a mechanism of cytotoxicity. Mol Pharm. 2011;8:1709–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92.

    Article  CAS  PubMed  Google Scholar 

  19. Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore forming protein induced biomembrane reorganization and dynamics: a focused review. Front Mol Biosci. 2021;8: 737561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Degors IMS, Wang C, Rehman ZU, Zuhorn IS. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc Chem Res. 2019;52:1750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu Z, Zhang S, Zhang B, Zhang C, Fang C-Y, Rehor I, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports. 2014;4:4495-.

  22. Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang H-C, et al. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep. 2015;5:11661.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Plaza-Ga I, Manzaneda-González V, Kisovec M, Almendro-Vedia V, Muñoz-Úbeda M, Anderluh G, et al. pH-triggered endosomal escape of pore-forming listeriolysin O toxin-coated gold nanoparticles. Journal of Nanobiotechnology. 2019;17:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, et al. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol. 2011;12:770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, et al. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front Bioeng Biotechnol. 2021;9: 701031.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bono N, Pennetta C, Bellucci MC, Sganappa A, Malloggi C, Tedeschi G, et al. Role of generation on successful DNA delivery of PAMAM–(Guanidino)Neomycin conjugates. ACS Omega. 2019;4:6796–807.

    Article  CAS  Google Scholar 

  27. Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today. 2015;18:565–72.

    Article  CAS  Google Scholar 

  28. Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. Journal of Materials Chemistry B. 2018;6:6904–18.

    Article  CAS  PubMed  Google Scholar 

  29. Creusat G, Rinaldi A-S, Weiss E, Elbaghdadi R, Remy J-S, Mulherkar R, et al. Proton sponge trick for ph-sensitive disassembly of polyethylenimine-based siRNA delivery systems. Bioconjug Chem. 2010;21:994–1002.

    Article  CAS  PubMed  Google Scholar 

  30. Velluto D, Thomas SN, Simeoni E, Swartz MA, Hubbell JA. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials. 2011;32:9839–47.

    Article  CAS  PubMed  Google Scholar 

  31. Amjad MW, Amin MCIM, Katas H, Butt AM, Kesharwani P, Iyer AK. In vivo antitumor activity of folate-conjugated cholic acid-polyethylenimine micelles for the codelivery of doxorubicin and siRNA to colorectal adenocarcinomas. Mol Pharm. 2015;12:4247–58.

    Article  CAS  PubMed  Google Scholar 

  32. Ng KE, Amin MCIM, Katas H, Amjad MW, Butt AM, Kesharwani P, et al. pH-Responsive triblock copolymeric micelles decorated with a cell-penetrating peptide provide efficient doxorubicin delivery. Nanoscale Res Lett. 2016;11:539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic (Copenhagen, Denmark). 2016;17:593–614.

    Article  CAS  Google Scholar 

  34. Lagache T, Sieben C, Meyer T, Herrmann A, Holcman D. Stochastic model of acidification, activation of hemagglutinin and escape of influenza viruses from an endosome. Front Phys. 2017;5:1.

    Article  Google Scholar 

  35. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell. 2009;137:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muthukrishnan N, Johnson GA, Lim J, Simanek EE, Pellois J-P. TAT-mediated photochemical internalization results in cell killing by causing the release of calcium into the cytosol of cells. Biochem Biophys Acta. 2012;1820:1734–43.

    Article  CAS  PubMed  Google Scholar 

  37. Soe TH, Watanabe K, Ohtsuki T. Photoinduced endosomal escape mechanism: a view from photochemical internalization mediated by CPP-photosensitizer conjugates. Molecules. 2020;26.

  38. Lai PS, Lou PJ, Peng CL, Pai CL, Yen WN, Huang MY, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release. 2007;122:39–46.

    Article  CAS  PubMed  Google Scholar 

  39. Lee ES, Kim D, Youn YS, Oh KT, Bae YH. A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl. 2008;47:2418–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core−shell nanoparticles. Nano Lett. 2007;7:3056–64.

    Article  CAS  PubMed  Google Scholar 

  41. Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces. 2013;5:3900–7.

    Article  CAS  PubMed  Google Scholar 

  42. Han R, Wu S, Tang K, Hou Y. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. Adv Powder Technol. 2020;31:3860–6.

    Article  CAS  Google Scholar 

  43. Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong J-H, et al. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol Pharm. 2019;16:1184–99.

    Article  CAS  PubMed  Google Scholar 

  44. Jerjes W, Theodossiou TA, Hirschberg H, Høgset A, Weyergang A, Selbo PK, et al. Photochemical internalization for intracellular drug delivery. From basic mechanisms to clinical research. Journal of clinical medicine. 2020;9:528.

  45. Denkova AG, de Kruijff RM, Serra-Crespo P. Nanocarrier-mediated photochemotherapy and photoradiotherapy. Adv Healthc Mater. 2018;7:1701211.

    Article  CAS  Google Scholar 

  46. Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. Journal of Nanobiotechnology. 2020;18:108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pasparakis G, Manouras T, Vamvakaki M, Argitis P. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo–chemotherapy. Nat Commun. 2014;5:3623.

    Article  PubMed  CAS  Google Scholar 

  48. Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective cytotoxicity to HER2 positive breast cancer cells by saporin-loaded nanobody-targeted polymeric nanoparticles in combination with photochemical internalization. Mol Pharm. 2019;16:1633–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yaghini E, Dondi R, Edler KJ, Loizidou M, MacRobert AJ, Eggleston IM. Codelivery of a cytotoxin and photosensitiser via a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release. Nanoscale. 2018;10:20366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fretz MM, Høgset A, Koning GA, Jiskoot W, Storm G. Cytosolic delivery of liposomally targeted proteins induced by photochemical internalization. Pharm Res. 2007;24:2040–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang K, Zhang Y, Meng X, Lu H, Chang H, Dong H, et al. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials. 2018;185:301–9.

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen J, Xie X, Neu M, Dumitrascu R, Reul R, Sitterberg J, et al. Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. J Gene Med. 2008;10:1236–46.

    Article  CAS  PubMed  Google Scholar 

  53. Ohya Y, Takahashi A, Kuzuya A. Preparation of biodegradable oligo(lactide)s-grafted dextran nanogels for efficient drug delivery by controlling intracellular traffic. Int J Mol Sci. 2018;19:1606.

    Article  PubMed Central  CAS  Google Scholar 

  54. Seow WY, Yang YY. Functional polycarbonates and their self-assemblies as promising non-viral vectors. J Control Release. 2009;139:40–7.

    Article  CAS  PubMed  Google Scholar 

  55. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu ZP, Niebert M, Porazik K, Walker TL, Cooper HM, Middelberg APJ, et al. Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release. 2008;130:86–94.

    Article  CAS  PubMed  Google Scholar 

  57. Lee J, Sands I, Zhang W, Zhou L, Chen Y. DNA-inspired nanomaterials for enhanced endosomal escape. Proc Natl Acad Sci U S A. 2021;118: e2104511118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–23.

    Article  CAS  PubMed  Google Scholar 

  59. Katas H, NikDzulkefli NNS, Sahudin S. Synthesis of a new potential conjugated TAT-peptide-chitosan nanoparticles carrier via disulphide linkage. J Nanomater. 2012;2012: 134607.

    Google Scholar 

  60. Katas H, Abdul Ghafoor Raja M, Ee LC. Comparative characterization and cytotoxicity study of TAT-peptide as potential vectors for siRNA and Dicer-substrate siRNA. Drug Development and Industrial Pharmacy. 2014;40:1443–50.

  61. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.

    Article  CAS  PubMed  Google Scholar 

  62. Nakase I, Kogure K, Harashima H, Futaki S. Application of a fusiogenic peptide GALA for intracellular delivery. Methods Mol Biol. 2011;683:525–33.

    Article  CAS  PubMed  Google Scholar 

  63. Chen YJ, Deng QW, Wang L, Guo XC, Yang JY, Li T, et al. GALA peptide improves the potency of nanobody–drug conjugates by lipid-induced helix formation. Chem Commun. 2021;57:1434–7.

    Article  CAS  Google Scholar 

  64. Liechty WB, Scheuerle RL, Vela Ramirez JE, Peppas NA. Uptake and function of membrane-destabilizing cationic nanogels for intracellular drug delivery. Bioengineering & translational medicine. 2018;4:17–29.

    Article  CAS  Google Scholar 

  65. Yang MM, Wilson WR, Wu Z. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm. 2017;516:323–33.

    Article  CAS  PubMed  Google Scholar 

  66. Xu H, Paxton JW, Wu Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharm Res. 2015;32:2428–38.

    Article  CAS  PubMed  Google Scholar 

  67. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials. 2016;85:152–67.

    Article  CAS  PubMed  Google Scholar 

  68. Amin MCIM, Butt AM, Amjad MW, Kesharwani P. Chapter 5 - Polymeric Micelles for Drug Targeting and Delivery. In: Mishra V, Kesharwani P, Mohd Amin MCI, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic Press; 2017. p. 167–202.

  69. Holder SJ, Sommerdijk NAJM. New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym Chem. 2011;2:1018–28.

    Article  CAS  Google Scholar 

  70. Son I, Lee Y, Baek J, Park M, Han D, Min SK, et al. pH-Responsive amphiphilic polyether micelles with superior stability for smart drug delivery. Biomacromol. 2021;22:2043–56.

    Article  CAS  Google Scholar 

  71. Xu L, Wang H, Chu Z, Cai L, Shi H, Zhu C, et al. Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Applied Polymer Materials. 2020;2:741–50.

    Article  CAS  Google Scholar 

  72. Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, et al. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release. 2021;339:114–29.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang N, Liu W, Dong Z, Yin Y, Luo J, Lu T, et al. An integrated tumor microenvironment responsive polymeric micelle for smart drug delivery and effective drug release. Bioconjug Chem. 2021;32:2083–94.

    Article  CAS  PubMed  Google Scholar 

  74. Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In vitro characterization of pluronic F127 and D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater. 2012;2012: 916573.

    Article  CAS  Google Scholar 

  75. Wu Y, Xiao Y, Huang Y, Xu Y, You D, Lu W, et al. Rod-shaped micelles based on PHF-g-(PCL-PEG) with pH-triggered doxorubicin release and enhanced cellular uptake. Biomacromol. 2019;20:1167–77.

    Article  CAS  Google Scholar 

  76. Yu H, Xu Z, Wang D, Chen X, Zhang Z, Yin Q, et al. Intracellular pH-activated PEG-b-PDPA wormlike micelles for hydrophobic drug delivery. Polym Chem. 2013;4:5052–5.

    Article  CAS  Google Scholar 

  77. Hinde E, Thammasiraphop K, Duong HTT, Yeow J, Karagoz B, Boyer C, et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol. 2017;12:81–9.

    Article  CAS  PubMed  Google Scholar 

  78. Li Y-L, Van Cuong N, Hsieh M-F. Endocytosis pathways of the folate tethered star-shaped PEG-PCL micelles in cancer cell lines. Polymers. 2014;6:634–50.

    Article  CAS  Google Scholar 

  79. Cao J, Xie X, Lu A, He B, Chen Y, Gu Z, et al. Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments. Biomaterials. 2014;35:4517–24.

    Article  CAS  PubMed  Google Scholar 

  80. Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015;14:115–24.

    Article  CAS  PubMed  Google Scholar 

  81. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small. 2008;4:2043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao Y, Li Y, Li Y, Yuan L, Zhou Y, Li J, et al. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale. 2015;7:597–612.

    Article  CAS  PubMed  Google Scholar 

  83. Du L, Zhou J, Meng L, Wang X, Wang C, Huang Y, et al. The pH-triggered triblock nanocarrier enabled highly efficient siRNA delivery for cancer therapy. Theranostics. 2017;7:3432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci. 2009;98:795–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei P, Sun M, Yang B, Xiao J, Du J. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J Control Release. 2020;322:81–94.

    Article  CAS  PubMed  Google Scholar 

  86. Kim D, Gao ZG, Lee ES, Bae YH. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tian J, Xu L, Xue Y, Jiang X, Zhang W. Enhancing photochemical internalization of DOX through a porphyrin-based amphiphilic block copolymer. Biomacromol. 2017;18:3992–4001.

    Article  CAS  Google Scholar 

  88. Miyamoto T, Tsuchiya K, Numata K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale. 2021;13:5679–92.

    Article  CAS  PubMed  Google Scholar 

  89. Schellinger JG, Pahang JA, Shi J, Pun SH. Block copolymers containing a hydrophobic domain of membrane-lytic peptides form micellar structures and are effective gene delivery agents. ACS Macro Lett. 2013;2:725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo XD, Tandiono F, Wiradharma N, Khor D, Tan CG, Khan M, et al. Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector. Biomaterials. 2008;29:4838–46.

    Article  CAS  PubMed  Google Scholar 

  91. Wu P, Luo X, Wu H, Zhang Q, Wang K, Sun M, et al. Combined hydrophobization of polyethylenimine with cholesterol and perfluorobutyrate improves siRNA delivery. Bioconjug Chem. 2020;31:698–707.

    Article  CAS  PubMed  Google Scholar 

  92. Hao F, Lee RJ, Zhong L, Dong S, Yang C, Teng L, et al. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics. 2019;9:5282–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He M, Huang L, Hou X, Zhong C, Bachir ZA, Lan M, et al. Efficient ovalbumin delivery using a novel multifunctional micellar platform for targeted melanoma immunotherapy. Int J Pharm. 2019;560:1–10.

    Article  CAS  PubMed  Google Scholar 

  94. Wang W, Balk M, Deng Z, Wischke C, Gossen M, Behl M, et al. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J Control Release. 2016;242:71–9.

    Article  CAS  PubMed  Google Scholar 

  95. Balk M, Behl M, Yang J, Li Q, Wischke C, Feng Y, et al. Design of polycationic micelles by self-assembly of polyethyleneimine functionalized oligo[(ε-caprolactone)-co-glycolide] ABA block copolymers. Polym Adv Technol. 2017;28:1278–84.

    Article  CAS  Google Scholar 

  96. Guo S, Huang L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater. 2011;2011: 742895.

    Google Scholar 

  97. Zhang Q, Zhou Z, Li C, Wu P, Sun M. pH-switchable coordinative micelles for enhancing cellular transfection of biocompatible polycations. ACS Appl Mater Interfaces. 2019;11:20689–98.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang S, Gan Y, Shao L, Liu T, Wei D, Yu Y, et al. Virus mimetic shell-sheddable chitosan micelles for siVEGF delivery and FRET-traceable acid-triggered release. ACS Appl Mater Interfaces. 2020.

  99. Lv Y, Huang H, Yang B, Liu H, Li Y, Wang J. A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan. Carbohydr Polym. 2014;111:101–7.

    Article  CAS  PubMed  Google Scholar 

  100. Peeler DJ, Thai SN, Cheng Y, Horner PJ, Sellers DL, Pun SH. pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery. Biomaterials. 2019;192:235–44.

    Article  CAS  PubMed  Google Scholar 

  101. Cheng Y, Yumul RC, Pun SH. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew Chem Int Ed Engl. 2016;55:12013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Feldmann DP, Cheng Y, Kandil R, Xie Y, Mohammadi M, Harz H, et al. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J Control Release. 2018;276:50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Du Rietz H, Hedlund H, Wilhelmson S, Nordenfelt P, Wittrup A. Imaging small molecule-induced endosomal escape of siRNA. Nat Commun. 2020;11:1809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, et al. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev. 2021;174:576–612.

    Article  CAS  PubMed  Google Scholar 

  105. Van de Vyver T, Bogaert B, De Backer L, Joris F, Guagliardo R, Van Hoeck J, et al. Cationic amphiphilic drugs boost the lysosomal escape of small nucleic acid therapeutics in a nanocarrier-dependent manner. ACS Nano. 2020;14:4774–91.

    Article  PubMed  CAS  Google Scholar 

  106. Baradaran Eftekhari R, Maghsoudnia N, Dorkoosh FA. Chloroquine: a brand-new scenario for an old drug. Expert Opin Drug Deliv. 2020;17:275–7.

    Article  PubMed  Google Scholar 

  107. Qiu L, Yao M, Gao M, Zhao Q. Doxorubicin and chloroquine coencapsulated liposomes: preparation and improved cytotoxicity on human breast cancer cells. J Liposome Res. 2012;22:245–53.

    Article  CAS  PubMed  Google Scholar 

  108. Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell. 2013;24:379–93.

    Article  CAS  PubMed  Google Scholar 

  109. Hajimolaali M, Mohammadian H, Torabi A, Shirini A, KhalifeShal M, BarazandehNezhad H, et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Deliv. 2021;18:877–89.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang B, Mallapragada S. The mechanism of selective transfection mediated by pentablock copolymers; part II: nuclear entry and endosomal escape. Acta Biomater. 2011;7:1580–7.

    Article  CAS  PubMed  Google Scholar 

  111. Vater M, Möckl L, Gormanns V, Schultz Fademrecht C, Mallmann AM, Ziegart-Sadowska K, et al. New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep. 2017;7:44277.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Joris F, De Backer L, Van de Vyver T, Bastiancich C, De Smedt SC, Raemdonck K. Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. J Control Release. 2018;269:266–76.

    Article  CAS  PubMed  Google Scholar 

  113. Wang L, Ariyarathna Y, Ming X, Yang B, James LI, Kreda SM, et al. A novel family of small molecules that enhance the intracellular delivery and pharmacological effectiveness of antisense and splice switching oligonucleotides. ACS Chem Biol. 2017;12:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Juliano RL, Wang L, Tavares F, Brown EG, James L, Ariyarathna Y, et al. Structure-activity relationships and cellular mechanism of action of small molecules that enhance the delivery of oligonucleotides. Nucleic Acids Res. 2018;46:1601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao H, Li Q, Hong Z. Paclitaxel-loaded mixed micelles enhance ovarian cancer therapy through extracellular pH-triggered PEG detachment and endosomal escape. Mol Pharm. 2016;13:2411–22.

    Article  CAS  PubMed  Google Scholar 

  116. Yu H, Zou Y, Wang Y, Huang X, Huang G, Sumer BD, et al. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano. 2011;5:9246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adeel Masood Butt or Mohd Cairul Iqbal Mohd Amin.

Ethics declarations

Conflicts of Interest

There are there are no relevant conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, A.M., Abdullah, N., Rani, N.N.I.M. et al. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles. Pharm Res 39, 1047–1064 (2022). https://doi.org/10.1007/s11095-022-03296-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03296-w

KEY WORDS

Navigation