Skip to main content

Advertisement

Log in

Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We have hypothesized that a high concentration of circulating monocytes and macrophages may contribute to the fast weight-based clearance of monoclonal antibodies (mAbs) in young children. Exploring this hypothesis, this work uses modeling to clarify the role of monocytes and macrophages in the elimination of mAbs.

Methods

Leveraging pre-clinical data from mice, a minimal physiologically-based pharmacokinetic model was developed to characterize mAb uptake and FcRn-mediated recycling in circulating monocytes, macrophages, and endothelial cells. The model characterized IgG disposition in complex scenarios of site-specific FcRn deletion and variable endogenous IgG levels. Evaluation was performed for predicting IgG disposition with co-administration of high dose IVIG. A one-at-a-time sensitivity analysis quantified the role of relevant cellular parameters on IgG elimination in various scenarios.

Results

The plasma AUC of mAbs was highly sensitive to endothelial cell parameters, but had near-nil sensitivity to monocyte and macrophage parameters, even in scenarios with 90% loss of FcRn expression/activity. In mice with normal FcRn expression, simulations suggest that less than 2% of an IV dose is eliminated in macrophages, while endothelial cells are predicted to dominate mAb elimination.

Conclusions

The model suggests that the role of monocytes and macrophages in IgG homeostasis includes extensive uptake and highly efficient FcRn-mediated protection, but not appreciable degradation when FcRn is present. Therefore, it is very unlikely that a high concentration of circulating monocytes can contribute to explaining the fast weight-based clearance of mAbs in very young children, even if FcRn expression/activity was 90% lower in children than in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88.

    Article  CAS  Google Scholar 

  2. Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106(8):2788–93. https://doi.org/10.1073/pnas.0810796106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Challa DK, Wang X, Montoyo HP, Velmurugan R, Ober RJ, Ward ES. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. mAbs. 2019;11(5):848–60. https://doi.org/10.1080/19420862.2019.1602459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richter WF, Christianson GJ, Frances N, Grimm HP, Proetzel G, Roopenian DC. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. mAbs. 2018;10(5):803–13. https://doi.org/10.1080/19420862.2018.1458808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akilesh S, Christianson GJ, Roopenian DC, Shaw AS. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol. 2007;1 79(7):4580–8. https://doi.org/10.4049/jimmunol.179.7.4580.

    Article  Google Scholar 

  6. Malik PRV, Edginton AN. Integration of ontogeny into a physiologically based pharmacokinetic model for monoclonal antibodies in premature infants. J Clin Pharmacol. 2019;60(4):466–76. https://doi.org/10.1002/jcph.1540.

    Article  CAS  PubMed  Google Scholar 

  7. Nathan and Oski's hematology and oncology of infancy and childhood. 8th ed. Philadelphia, PA: Elsevier; 2015.

  8. Morris L, Graham CF, Gordon S. Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development. 1991;112(2):517–26.

    Article  CAS  Google Scholar 

  9. Lopez BG, Tsai MS, Baratta JL, Longmuir KJ, Robertson RT. Characterization of Kupffer cells in livers of developing mice. Comp Hepatol. 2011;10(1):2. https://doi.org/10.1186/1476-5926-10-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol. 2018;14(6):585–99. https://doi.org/10.1080/17425255.2018.1482278.

    Article  CAS  PubMed  Google Scholar 

  11. Cianga C, Cianga P, Plamadeala P, Amalinei C. Nonclassical major histocompatibility complex I-like fc neonatal receptor (FcRn) expression in neonatal human tissues. Hum Immunol. 2011;72(12):1176–87. https://doi.org/10.1016/j.humimm.2011.08.020.

    Article  CAS  PubMed  Google Scholar 

  12. Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res. 2014;34(2):137–42. https://doi.org/10.3109/10799893.2013.865745.

    Article  CAS  PubMed  Google Scholar 

  13. Pan X, Stader F, Abduljalil K, Gill KL, Johnson TN, Gardner I, Jamei M. Development and application of a physiologically-based pharmacokinetic model to predict the pharmacokinetics of therapeutic proteins from full-term neonates to adolescents. AAPS J. 2020;22(4):76.

    Article  CAS  Google Scholar 

  14. Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709. https://doi.org/10.1007/s10928-007-9065-1.

    Article  CAS  PubMed  Google Scholar 

  15. Niederalt C, Kuepfer L, Solodenko J, Eissing T, Siegmund HU, Block M, Willmann S, Lippert J. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn. 2018;45(2):235–57. https://doi.org/10.1007/s10928-017-9559-4.

    Article  CAS  PubMed  Google Scholar 

  16. Li T, Balthasar JP. Application of physiologically based pharmacokinetic modeling to predict the effects of FcRn inhibitors in mice, rats, and monkeys. J Pharm Sci. 2019;108(1):701–13. https://doi.org/10.1016/j.xphs.2018.10.065.

    Article  CAS  PubMed  Google Scholar 

  17. Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn across species and tissues. J Histochem Cytochem. 2017;65(6):321–33. https://doi.org/10.1369/0022155417705095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity. 2015;43(2):382–93. https://doi.org/10.1016/j.immuni.2015.07.016.

    Article  CAS  PubMed  Google Scholar 

  19. Austyn JM, Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981;11(10):805–15. https://doi.org/10.1002/eji.1830111013.

    Article  CAS  PubMed  Google Scholar 

  20. O'Connell KE, Mikkola AM, Stepanek AM, Vernet A, Hall CD, Sun CC, Yildirim E, Staropoli JF, Lee JT, Brown DE. Practical murine hematopathology: a comparative review and implications for research. Comp Med. 2015;65(2):96–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schenkel AR, Chew TW, Muller WA. Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J Immunol. 2004;173(10):6403–8. https://doi.org/10.4049/jimmunol.173.10.6403.

    Article  CAS  PubMed  Google Scholar 

  22. Helk E, Bernin H, Ernst T, Ittrich H, Jacobs T, Heeren J, Tacke F, Tannich E, Lotter H. TNF alpha-mediated liver destruction by kupffer cells and Ly6Chi monocytes during Entamoeba histolytica infection. PLoS Pathog. 2013;9(1):e1003096. https://doi.org/10.1371/journal.ppat.1003096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baratta JL, Ngo A, Lopez B, Kasabwalla N, Longmuir KJ, Robertson RT. Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol. 2009;131(6):713–26. https://doi.org/10.1007/s00418-009-0577-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996–1006. https://doi.org/10.1038/ni.2691.

    Article  CAS  PubMed  Google Scholar 

  25. Sohlenius-Sternbeck AK. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol in Vitro. 2006;20(8):1582–6. https://doi.org/10.1016/j.tiv.2006.06.003.

    Article  CAS  PubMed  Google Scholar 

  26. Aborig M, Malik PRV, Nambiar S, Chelle P, Darko J, Mutsaers A, Edginton AN, Fleck A, Osei E, Wettig S. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics. 2019;11(4):179.

    Article  CAS  Google Scholar 

  27. Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med. 1985;161(3):475–89. https://doi.org/10.1084/jem.161.3.475.

    Article  CAS  PubMed  Google Scholar 

  28. Deng R, Meng YG, Hoyte K, Lutman J, Lu Y, Iyer S, et al. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice. mAbs. 2012;4(1):101–9. https://doi.org/10.4161/mabs.4.1.18543.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mavroudis PD, Ayyar VS, Jusko WJ. ATLAS mPBPK: a MATLAb-based tool for modeling and simulation of minimal physiologically based PharmacoKinetic models. CPT Pharmacometrics Syst Pharmacol. 2019;8(8):557–66. https://doi.org/10.1002/psp4.12441.

    Article  CAS  PubMed Central  Google Scholar 

  30. Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, et al. An in vitro FcRn- dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans mAbs. 2019;11(5):942–55. https://doi.org/10.1080/19420862.2019.1605270.

    Article  CAS  Google Scholar 

  31. van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues. In: Weissig V, editor. Liposomes: Methods and protocols, volume 1: pharmaceutical Nanocarriers. Totowa: Humana Press; 2010. p. 189–203.

    Chapter  Google Scholar 

  32. Eigenmann MJ, Fronton L, Grimm HP, Otteneder MB, Krippendorff B-F. Quantification of IgG monoclonal antibody clearance in tissues. mAbs. 2017;9(6):1007–15. https://doi.org/10.1080/19420862.2017.1337619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Datta-Mannan A, Croy JE, Schirtzinger L, Torgerson S, Breyer M, Wroblewski VJ. Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys. mAbs. 2016;8(5):969–82. https://doi.org/10.1080/19420862.2016.1178435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu Y-RA, O'Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One. 2016;11(3):e0150606. https://doi.org/10.1371/journal.pone.0150606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toh WH, Louber J, Mahmoud IS, Chia J, Bass GT, Dower SK, et al. FcRn mediates fast recycling of endocytosed albumin and IgG from early macropinosomes in primary macrophages. J Cell Sci. 2019;133(5). https://doi.org/10.1242/jcs.235416.

  36. Chang HP, Kim SJ, Shah DK. Whole-body pharmacokinetics of antibody in mice determined using enzyme-linked immunosorbent assay and derivation of tissue interstitial concentrations. J Pharm Sci. 2021;110(1):446–57. https://doi.org/10.1016/j.xphs.2020.05.025.

    Article  CAS  PubMed  Google Scholar 

  37. Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci. 2010;99(3):1582–600. https://doi.org/10.1002/jps.21918.

    Article  CAS  PubMed  Google Scholar 

  38. Sun Y, Cai H, Hu Z, Boswell CA, Diao J, Li C, et al. Balancing the affinity and pharmacokinetics of antibodies by modulating the size of charge patches on complementarity-determining regions. J Pharm Sci. 2020;109(12):3690–6. https://doi.org/10.1016/j.xphs.2020.09.003.

    Article  CAS  PubMed  Google Scholar 

  39. Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol. 2021;41(2):300–15. https://doi.org/10.1080/07388551.2020.1869684.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors have no conflicts of interest or sources of competing interest to declare.

Funding

This work was funded in part by Canadian Institutes of Health Research through the Frederick Banting and Charles Best Canada Graduate Scholarship (CGS-D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea N. Edginton.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, P.R.V., Hamadeh, A. & Edginton, A.N. Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies. Pharm Res 39, 239–250 (2022). https://doi.org/10.1007/s11095-022-03177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03177-2

KEY WORDS

Navigation