Skip to main content

Advertisement

Log in

Improved Core Viscosity Achieved by PDLLA10kCo-Incorporation Promoted Drug Loading and Stability of mPEG2k-b-PDLLA2.4k Micelles

  • Original Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aims to investigate the effect of poly(D, L-lactic acid)10K (PDLLA10K) incorporation on the drug loading and stability of poly(ethylene glycol)2K-block-poly(D, L-lactide)2.4K (mPEG2k-b-PDLLA2.4k) micelles. In addition, a suitable lyophilization protector was screened for this micelle to obtain favorable lyophilized products.

Methods

The incorporation ratios of PDLLA10k were screened based on the particle size and drug loading. The dynamic stability, core viscosity, drug release, stability in albumin, and in vivo pharmacokinetic characteristics of PDLLA10k incorporated micelles were compared with the original micelles. In addition, the particle size variation was used as an indicator to screen the most suitable lyophilization protectant for the micelles. DSC, FTIR, XRD were used to illustrate the mechanism of the lyophilized protectants.

Results

After the incorporation of 5 wt% PDLLA10K, the maximum loading of mPEG2k-b-PDLLA2.4k micelles for TM-2 was increased from 26 wt% to 32 wt%, and the in vivo half-life was increased by 2.25-fold. Various stability of micelles was improved. Also, the micelles with hydroxypropyl-β-cyclodextrin (HP-β-CD) as lyophilization protectants had minimal variation in particle size.

Conclusions

PDLLA10k incorporation can be employed as a strategy to increase the stability of mPEG2k-b-PDLLA2.4k micelles, which can be attributed to the viscosity building effect. HP-β-CD can be used as an effective lyophilization protectant since mPEG and HP-β-CD form the pseudopolyrotaxanesque inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sofias AM, Dunne M, Storm G, Allen C. The battle of "nano" paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. https://doi.org/10.1016/j.addr.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  2. Tommasi S, Mangia A, Lacalamita R, Bellizzi A, Fedele V, Chiriatti A, Thomssen C, Kendzierski N, Latorre A, Lorusso V, Schittulli F, Zito F, Kavallaris M, Paradiso A. Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins. Int J Cancer. 2007;120(10):2078–85. https://doi.org/10.1002/ijc.22557.

    Article  CAS  PubMed  Google Scholar 

  3. Men L, Zhao Y, Lin H, Yang M, Liu H, Tang X, Yu Z. Characterization of in vitro metabolites of TM-2, a potential antitumor drug, in rat, dog and human liver microsomes using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(20):2162–70. https://doi.org/10.1002/rcm.7003.

    Article  CAS  PubMed  Google Scholar 

  4. Men L, Zhao Y, Lin H, Yang M, Liu H, Shao Y, Fan R, Tang X, Yu Z. Application of an LC-MS/MS method to the pharmacokinetics of TM-2, a potential antitumour agent, in rats. Drug Testing Anal. 2015;7(6):544–9. https://doi.org/10.1002/dta.1711.

    Article  CAS  Google Scholar 

  5. Chen YD, Huang ZY. Differences between the quality aspects of various generic and branded docetaxel formulations. Curr Med Res Opin. 2021. https://doi.org/10.1080/03007995.2021.1929895.

  6. Osorno LL, Brandley AN, Maldonado DE, Yiantsos A, Mosley RJ, Byrne ME. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. Nanomaterials. 2021;11(2):278. https://doi.org/10.3390/nano11020278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng X, Xie JZ, Zhang X, Sun WT, Zhao HY, Li YT, Wang C. An overview of polymeric nanomicelles in clinical trials and on the market. Chin Chem Lett. 2021;32(1):243–57. https://doi.org/10.1016/j.cclet.2020.11.029.

    Article  CAS  Google Scholar 

  8. Zhang Y, Ren TY, Gou JX, Zhang L, Tao XG, Tian B, Tian P, Yu D, Song J, Liu X, Chao Y, Xiao W, Tang X. Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release. 2017;261:352–66. https://doi.org/10.1016/j.jconrel.2017.01.047.

    Article  CAS  PubMed  Google Scholar 

  9. Letchford K, Burt HM. Copolymer micelles and Nanospheres with different in vitro stability demonstrate similar paclitaxel pharmacokinetics. Mol Pharm. 2012;9(2):248–60. https://doi.org/10.1021/mp2002939.

    Article  CAS  PubMed  Google Scholar 

  10. Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, Shen Y. The blood clearance kinetics and pathway of polymeric micelles in Cancer drug delivery. ACS Nano. 2018;12(6):6179–92. https://doi.org/10.1021/acsnano.8b02830.

    Article  CAS  PubMed  Google Scholar 

  11. Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748–64. https://doi.org/10.1039/d1nr02065j.

    Article  CAS  PubMed  Google Scholar 

  12. Ke X, Ng VWL, Ono RJ, Chan JMW, Krishnamurthy S, Wang Y, et al. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release. 2014;193:9–26. https://doi.org/10.1016/j.jconrel.2014.06.061.

    Article  CAS  PubMed  Google Scholar 

  13. Wei X, Liao JH, Davoudi Z, Zheng H, Chen JR, Li D, et al. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs. 2018;16(11):439. https://doi.org/10.3390/md16110439.

    Article  CAS  PubMed Central  Google Scholar 

  14. Zhang Y, Liu Y, Wang N, Liu H, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Preparation of mPEG-b-PLA/TM-2 micelle lyophilized products by mixed Lyoprotectors and antitumor effect in vivo. AAPS PharmSciTech. 2021;22(1):38. https://doi.org/10.1208/s12249-020-01885-9.

    Article  CAS  PubMed  Google Scholar 

  15. Gou J, Feng S, Xu H, Fang G, Chao Y, Zhang Y, Xu H, Tang X. Decreased Core crystallinity facilitated drug loading in polymeric micelles without affecting their biological performances. Biomacromolecules. 2015;16(9):2920–9. https://doi.org/10.1021/acs.biomac.5b00826.

    Article  CAS  PubMed  Google Scholar 

  16. Allijn IE, Schiffelers RM, Storm G. Comparison of pharmaceutical nanoformulations for curcumin: enhancement of aqueous solubility and carrier retention. Int J Pharm. 2016;506(1–2):407–13. https://doi.org/10.1016/j.ijpharm.2016.04.070.

    Article  CAS  PubMed  Google Scholar 

  17. Vakil R, Kwon GS. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir. 2006;22(23):9723–9. https://doi.org/10.1021/la061408y.

    Article  CAS  PubMed  Google Scholar 

  18. Kang N, Perron M-È, Prud'homme RE, Zhang Y, Gaucher G, Leroux J-C. Stereocomplex block copolymer micelles: core−shell nanostructures with enhanced stability. Nano Lett. 2005;5(2):315–9. https://doi.org/10.1021/nl048037v.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Liu Y, Pu CG, Zhang HJ, Tan XY, Gou JX, He H, Yin T, Zhang Y, Wang Y, Tang X. Drug-polymer interaction, pharmacokinetics and antitumor effect of PEG-PLA/taxane derivative TM-2 micelles for intravenous drug delivery. Pharm Res. 2018;35(11):13. https://doi.org/10.1007/s11095-018-2477-3.

    Article  CAS  Google Scholar 

  20. Miller T, van Colen G, Sander B, Golas MM, Uezguen S, Weigandt M, Goepferich A. Drug loading of polymeric micelles. Pharm Res. 2013;30(2):584–95. https://doi.org/10.1007/s11095-012-0903-5.

    Article  CAS  PubMed  Google Scholar 

  21. Zhuo XZ, Lei T, Miao LL, Chu W, Li XW, Luo LF, Gou J, Zhang Y, Yin T, He H, Tang X. Disulfiram-loaded mixed nanoparticles with high drug-loading and plasma stability by reducing the core crystallinity for intravenous delivery. J Colloid Interface Sci. 2018;529:34–43. https://doi.org/10.1016/j.jcis.2018.05.057.

    Article  CAS  PubMed  Google Scholar 

  22. Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, et al. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol. 2020;149:108–15. https://doi.org/10.1016/j.ijbiomac.2020.01.222.

    Article  CAS  PubMed  Google Scholar 

  23. Shi CJ, Sun YJ, Wu HY, Zhu CG, Wei GG, Li JF, Chan T, Ouyang D, Mao S. Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading. Int J Pharm. 2016;512(1):282–91. https://doi.org/10.1016/j.ijpharm.2016.08.054.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Y, Choi K, Choi SO, Kim J. Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Adv. 2018;8(35):19791–803. https://doi.org/10.1039/c8ra01467a.

    Article  CAS  Google Scholar 

  25. Guo XD, Qian Y, Zhang CY, Nie SY, Zhang LJ. Can drug molecules diffuse into the core of micelles? Soft Matter. 2012;8(39):9989–95. https://doi.org/10.1039/c2sm26200b.

    Article  CAS  Google Scholar 

  26. Li Y, Yang L. Driving forces for drug loading in drug carriers. J Microencapsul. 2015;32(3):255–72. https://doi.org/10.3109/02652048.2015.1010459.

    Article  CAS  PubMed  Google Scholar 

  27. Carstens MG, de Jong PHJLF, van Nostrum CF, Kemmink J, Verrijk R, de Leede LGJ, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm. 2008;68(3):596–606. https://doi.org/10.1016/j.ejpb.2007.08.014.

    Article  CAS  PubMed  Google Scholar 

  28. Xiang HZ, Wang YL, Yang WH, Hu CB, Mu YH, Li JF. Study of the mechanical and thermal properties of poly(lactic acid) and poly(ethylene glycol) block copolymer with molecular dynamics. Int J Polym Anal Charact. 2010;15(4):235–44. https://doi.org/10.1080/10236661003746405.

    Article  CAS  Google Scholar 

  29. Liggins RT, Burt HM. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev. 2002;54(2):191–202. https://doi.org/10.1016/s0169-409x(02)00016-9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang XJ, Yang QS, Liu X, Shang JJ, Leng JS. Atomistic investigation of the shape-memory effect of amorphous poly(L-lactide) with different molecular weights. Smart Mater Struct. 2020;29(1):11. https://doi.org/10.1088/1361-665X/ab471c.

    Article  Google Scholar 

  31. Hillgren A, Evertsson H, Alden M. Interaction between lactate dehydrogenase and tween 80 in aqueous solution. Pharm Res. 2002;19(4):504–10. https://doi.org/10.1023/a:1015156031381.

    Article  CAS  PubMed  Google Scholar 

  32. Dey A, Banik R, Ghosh S. Temperature comparative studies on self-assembly of sodium dodecyl Sulphate and Didodecyl dimethyl ammonium bromide in aqueous, brine, and Trifluoroethanol media. J Surfactant Deterg. 2021;24(3):459–72. https://doi.org/10.1002/jsde.12385.

    Article  CAS  Google Scholar 

  33. Jelonek K, Li SM, Wu XH, Kasperczyk J, Marcinkowski A. Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. Int J Pharm. 2015;485(1–2):357–64. https://doi.org/10.1016/j.ijpharm.2015.03.032.

    Article  CAS  PubMed  Google Scholar 

  34. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53–65. https://doi.org/10.1016/j.nantod.2012.01.002.

    Article  CAS  Google Scholar 

  35. Nicolai T, Colombani O, Chassenieux C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter. 2010;6(14):3111–8. https://doi.org/10.1039/b925666k.

    Article  CAS  Google Scholar 

  36. Kelley EG, Murphy RP, Seppala JE, Smart TP, Hann SD, Sullivan MO, Epps TH. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway. Nat Commun. 2014;5:10. https://doi.org/10.1038/ncomms4599.

    Article  CAS  Google Scholar 

  37. Won Y-Y, Davis HT, Bates FS. Molecular exchange in PEO−PB micelles in water. Macromolecules. 2003;36(3):953–5. https://doi.org/10.1021/ma021439+.

    Article  CAS  Google Scholar 

  38. Schantz AB, Saboe PO, Sines IT, Lee HY, Bishop KJM, Maranas JK, Butler PD, Kumar M. PEE-PEO block copolymer exchange rate between mixed micelles is detergent and temperature activated. Macromolecules. 2017;50(6):2484–94. https://doi.org/10.1021/acs.macromol.6b01973.

    Article  CAS  Google Scholar 

  39. Myhre S, Amann M, Willner L, Knudsen KD, Lund R. How detergents dissolve polymeric micelles: kinetic pathways of hybrid micelle formation in SDS and block copolymer mixtures. Langmuir. 2020;36(43):12887–99. https://doi.org/10.1021/acs.langmuir.0c02123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen S-N, Chu C-H, Wang Y-C, Huang H-Y, Wang Y-J, Lin J-Y, Lu HT, Wang SJ, Yang CS. Polymer-stabilized micelles reduce the drug rapid clearance in vivo. J Nanomater. 2018;2018:1–7. https://doi.org/10.1155/2018/5818592.

    Article  CAS  Google Scholar 

  41. Ma Y-C, Wang J-X, Tao W, Qian H-S, Yang X-Z. Polyphosphoester-based nanoparticles with viscous flow core enhanced therapeutic efficacy by improved intracellular drug release. ACS Appl Mater Interfaces. 2014;6(18):16174–81. https://doi.org/10.1021/am5042466.

    Article  CAS  PubMed  Google Scholar 

  42. Rajdev P, Ghosh S. Fluorescence resonance energy transfer (FRET): a powerful tool for probing amphiphilic polymer aggregates and supramolecular polymers. J Phys Chem B. 2019;123(2):327–42. https://doi.org/10.1021/acs.jpcb.8b09441.

    Article  CAS  PubMed  Google Scholar 

  43. Chen H, Kim S, He W, Wang H, Low PS, Park K, Cheng JX. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging. Langmuir. 2008;24(10):5213–7. https://doi.org/10.1021/la703570m.

    Article  CAS  PubMed  Google Scholar 

  44. Liu B, Thayumanavan S. Importance of evaluating dynamic encapsulation stability of amphiphilic assemblies in serum. Biomacromolecules. 2017;18(12):4163–70. https://doi.org/10.1021/acs.biomac.7b01220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diezi TA, Bae Y, Kwon GS. Enhanced stability of PEG-block-poly(N-hexyl stearate l-aspartamide) micelles in the presence of serum proteins. Mol Pharm. 2010;7(4):1355–60. https://doi.org/10.1021/mp100069p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y, Fay F, Hak S, Manuel Perez-Aguilar J, Sanchez-Gaytan BL, Goode B, Duivenvoorden R, de Lange Davies C, Bjørkøy A, Weinstein H, Fayad ZA, Pérez-Medina C, Mulder WJM. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nat Commun. 2016;7(1):11221. https://doi.org/10.1038/ncomms11221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koji K, Yoshinaga N, Mochida Y, Hong T, Miyazaki T, Kataoka K, et al. Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials. 2020;261:120332. https://doi.org/10.1016/j.biomaterials.2020.120332.

    Article  CAS  PubMed  Google Scholar 

  48. Mochida Y, Cabral H, Miura Y, Albertini F, Fukushima S, Osada K, Nishiyama N, Kataoka K. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano. 2014;8(7):6724–38. https://doi.org/10.1021/nn500498t.

    Article  CAS  PubMed  Google Scholar 

  49. Makino A, Hara E, Hara I, Yamahara R, Kurihara K, Ozeki E, Yamamoto F, Kimura S. Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides. J Control Release. 2012;161(3):821–5. https://doi.org/10.1016/j.jconrel.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, van Rooy I, Hak S, Fay F, Tang J, Davies CDL, et al. Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice. ACS Nano. 2013;7(11):10362–70. https://doi.org/10.1021/nn404782p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou P, Chen H, Paholak HJ, Sun D. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles. Mol Pharm. 2013;10(11):4185–94. https://doi.org/10.1021/mp4002393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin W, Kim D. pH-sensitive micelles with cross-linked cores formed from polyaspartamide derivatives for drug delivery. Langmuir. 2011;27(19):12090–7. https://doi.org/10.1021/la200120p.

    Article  CAS  PubMed  Google Scholar 

  53. Van Domeselaar GH, Kwon GS, Andrew LC, Wishart DS. Application of solid phase peptide synthesis to engineering PEO–peptide block copolymers for drug delivery. Colloids Surf B: Biointerfaces. 2003;30(4):323–34. https://doi.org/10.1016/S0927-7765(03)00125-5.

    Article  CAS  Google Scholar 

  54. Ojha T, Hu QZ, Colombo C, Wit J, van Geijn M, van Steenbergen MJ, et al. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J. 2021;16(6):e2000212. https://doi.org/10.1002/biot.202000212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Di Tommaso C, Como C, Gurny R, Moeller M. Investigations on the lyophilisation of MPEG-hexPLA micelle based pharmaceutical formulations. Eur J Pharm Sci. 2010;40(1):38–47. https://doi.org/10.1016/j.ejps.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  56. Yang ZL, Li XR, Yang KW, Liu Y. Freeze-drying and in vitro release kinetics of poly(ethylene glycol)poly(dl-lactide) block copolymer micelles. Acta Chim Sin. 2007;65(19):2169–74.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

None.

Funding

This work was supported by National Mega-project for Innovative Drugs [No.2019ZX09721001], Liaoning Revitalization Talents Program [XLYC1908031], National Science and Technology Major Project of the Ministry of Science and Technology of China [No.2018ZX09735005], and the Project of Liaoning Provincial Department of Education [2019LQN07], PhD Research Startup Foundation of Liaoning Province [2020BS-128]. National Key R&D Program of China (No. 2020YFE0201700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxin Gou or Xing Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Zhang, Y., Yuan, H. et al. Improved Core Viscosity Achieved by PDLLA10kCo-Incorporation Promoted Drug Loading and Stability of mPEG2k-b-PDLLA2.4k Micelles. Pharm Res 39, 369–379 (2022). https://doi.org/10.1007/s11095-022-03174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03174-5

KEY WORDS

Navigation