Skip to main content
Log in

Drug Loading of Polymeric Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To gain mechanistic insights into drug loading and lyophilization of polymeric micelles.

Methods

PEGylated poly-4-(vinylpyridine) micelles were loaded with dexamethasone. Three different methods were applied and compared: O/W emulsion, direct dialysis, cosolvent evaporation. Micellar dispersions with the highest drug load were lyophilized with varying lyoprotectors: sucrose, trehalose, maltose, a polyvinylpyrrolidine derivative, and β-cyclodextrin derivatives. For comparison, other PEGylated block copolymer micelles (PEGylated polylactic acid, polylactic acid-co-glycolic acid, polycaprolactone) were freeze-dried.

Results

Drug loading via direct dialysis from acetone was a less effective loading method which led to dexamethasone loads <2% w/w. O/W emulsion technique from dichlormethane increased drug load up to ~13% w/w; optimized cosolvent evaporation increased load up to ~19% w/w. An important step for cosolvent evaporation was solubility screen of the drug prior to preparation. Loading was maintained upon lyophilization with β-cyclodextrins which proved to be versatile stabilizers for other block copolymer micelles.

Conclusion

Careful solvent selection prior to cosolvent evaporation was a beneficial approach to load hydrophobic drugs into polymeric micelles. Moreover, β-cyclodextrins could be used as versatile lyoprotectors for these micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  2. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Meth. 2000;44:235–49.

    Article  CAS  Google Scholar 

  3. Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;5:82–5.

    Google Scholar 

  4. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15:2184–94.

    Article  PubMed  CAS  Google Scholar 

  5. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2011.

  6. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007;6:609–21.

    Article  PubMed  CAS  Google Scholar 

  7. Tyrrell ZL, Shen YQ, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci. 2010;35:1128–43.

    Article  CAS  Google Scholar 

  8. Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv. 2010;7:49–62.

    Article  PubMed  CAS  Google Scholar 

  9. Jones M, Leroux J. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    Article  PubMed  CAS  Google Scholar 

  10. Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release. 2005;104:289–300.

    Article  PubMed  CAS  Google Scholar 

  11. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.

    Article  PubMed  CAS  Google Scholar 

  12. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43:197–212.

    Article  Google Scholar 

  13. Jeon HJ, Jeong JI, Jang MK, Park YH, Nah JW. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm. 2000;207:99–108.

    Article  PubMed  CAS  Google Scholar 

  14. Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329:158–65.

    Article  PubMed  CAS  Google Scholar 

  15. Fournier E, Dufresne MH, Smith DC, Ranger M, Leroux JC. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res. 2004;21:962–8.

    Article  PubMed  CAS  Google Scholar 

  16. Jansook P, Loftsson T. gamma CD/HP gamma CD: synergistic solubilization. Int J Pharm. 2008;363:217–9.

    Article  PubMed  CAS  Google Scholar 

  17. Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Goepferich A. Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res. 2012;29:448–59.

    Article  PubMed  CAS  Google Scholar 

  18. Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface 2011.

  19. Richter A, Olbrich C, Krause M, Hoffmann J, Kissel T. Polymeric micelles for parenteral delivery of Sagopilone: physicochemical characterization, novel formulation approaches and their toxicity assessment in vitro as well as in vivo. Eur J Pharm Biopharm. 2010;75:80–9.

    Article  PubMed  CAS  Google Scholar 

  20. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

    Article  PubMed  CAS  Google Scholar 

  21. Sander B, Golas MM, Stark H. Corrim-based alignment for improved speed in single-particle image processing. J Struct Biol. 2003;143:219–28.

    Article  PubMed  CAS  Google Scholar 

  22. Breyer S, Semmler A, Miller T, Hill A, Geissler S, Haberkorn U, Mier W. Radioiodinated dechloro-4-iodofenofibrate: a hydrophobic model drug for molecular imaging studies. In 2012.

  23. European Medicines Agency. ICH Topic Q3C (R4) Impurities: Guideline for Residual Solvents. In 2009.

  24. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

    Article  PubMed  CAS  Google Scholar 

  25. Li X, Yang H, Xu LM, Fu XN, Guo HW, Zhang XK. Janus micelle formation induced by protonation/deprotonation of poly(2-vinylpyridine)-block-poly(ethylene oxide) diblock copolymers. Macromol Chem Phys. 2010;211:297–302.

    Article  CAS  Google Scholar 

  26. Leson A, Hauschild S, Rank A, Neub A, Schubert R, Forster S, Mayer C. Molecular exchange through membranes of poly(2-vinylpyridine-block-ethylene oxide) vesicles. Small. 2007;3:1074–83.

    Article  PubMed  CAS  Google Scholar 

  27. Vangeyte P, Gautier S, Jerome R. About the methods of preparation of poly(ethylene oxide)-b-poly(epsilon-caprolactone) nanoparticles in water analysis by dynamic light scattering. Colloids Surf, A Physicochem Eng Asp. 2004;242:203–11.

    Article  CAS  Google Scholar 

  28. Jette KK, Law D, Schmitt EA, Kwon GS. Preparation and drug loading of poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res. 2004;21:1184–91.

    Article  PubMed  CAS  Google Scholar 

  29. Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98:4808–17.

    Article  PubMed  CAS  Google Scholar 

  30. Miyajima K. Role of saccharides for the freeze-thawing and freeze drying of liposome. Adv Drug Deliv Rev. 1997;24:151–9.

    Article  CAS  Google Scholar 

  31. Tanaka K, Takeda T, Fujii K, Miyajima K. Cryoprotective mechanism of saccharides on freeze-drying of liposome. Chem Pharm Bull. 1992;40:1–5.

    Article  CAS  Google Scholar 

  32. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63:87–94.

    Article  PubMed  CAS  Google Scholar 

  33. Allison SD, Molina MC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim Biophys Acta. 2000;1468:127–38.

    Article  PubMed  CAS  Google Scholar 

  34. Guo MY, Jiang M. Macromolecular self-assembly based on inclusion complexation of cyclodextrins. Prog Chem. 2007;19:557–66.

    CAS  Google Scholar 

  35. Dreiss CA, Nwabunwanne E, Liu R, Brooks NJ. Assembling and de-assembling micelles: competitive interactions of cyclodextrins and drugs with Pluronics. Soft Matter. 2009;5:1888–96.

    Article  CAS  Google Scholar 

  36. Joseph J, Dreiss CA, Cosgrove T, Pedersen JS. Rupturing polymeric micelles with cyclodextrins rupturing polymeric micelles with cyclodextrins. Langmuir. 2007;23:460–6.

    Article  PubMed  CAS  Google Scholar 

  37. Qin J, Meng XW, Li BJ, Ha W, Yu XQ, Zhang S. Self-assembly of beta-cyclodextrin and pluronic into hollow nanospheres in aqueous solution. J Colloid Interface Sci. 2010;350:447–52.

    Article  PubMed  CAS  Google Scholar 

  38. Becheri A, Lo Nostro P, Ninham BW, Baglioni P. The curious world of polypseudorotaxanes:GÇë cyclodextrins as probes of water structure. J Phys Chem B. 2003;107:3979–87.

    Article  CAS  Google Scholar 

  39. He L, Huang J, Chen Y, Xu X, Liu L. Inclusion interaction of highly densely PEO grafted polymer brush and a-cyclodextrin. Macromolecules. 2005;38:3845–51.

    Article  CAS  Google Scholar 

  40. Plumridge TH, Waigh RD. Water structure theory and some implications for drug design. J Pharm Pharmacol. 2002;54:1155–79.

    Article  PubMed  CAS  Google Scholar 

  41. Lerbret A, Bordat P, Affouard F, Descamps M, Migliardo F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J Phys Chem B. 2005;109:11046–57.

    Article  PubMed  CAS  Google Scholar 

  42. Sano H, Ichi T, Kumashiro Y, Kontani K, Kuze T, Mizutani G, Ooya T, Yui N. Raman scattering study of water clusters around polyrotaxane and pseudopolyrotaxane supramolecular assemblies. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59:285–9.

    Article  PubMed  CAS  Google Scholar 

  43. Liu KL, Goh SH, Li J. Threading a-cyclodextrin through poly[(R, S)-3-hydroxybutyrate] in poly[(R, S)-3-hydroxybutyrate]-poly(ethylene glycol)-poly[(R, S)-3-hydroxybutyrate] triblock copolymers: formation of block-selected polypseudorotaxanes. Macromolecules. 2008;41:6027–34.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to Golshah Ayoubi for expert technical assistance. The Centre for Stochastic Geometry and Advanced Bioimaging is supported by the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Goepferich.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, T., van Colen, G., Sander, B. et al. Drug Loading of Polymeric Micelles. Pharm Res 30, 584–595 (2013). https://doi.org/10.1007/s11095-012-0903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0903-5

KEY WORDS

Navigation