Skip to main content
Log in

A New Saquinavir Mesylate-Sodium Decyl Sulfate Salt Discovered by Serendipity during an Anomalous Dissolution Test

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To understand the anomalous behavior of Saquinavir Mesylate (SQVM) in sodium decyl sulfate (SDS) medium during a dissolution test through a crystallographic analysis of the crystal obtained. As a result, it will be possible to elucidate its crystal structure and carry out a complete solid-state characterization of the API.

Methods

The solid form obtained was characterized by a structural analysis through X-ray single crystal and powder diffraction. The crystallographic structures of the new salt and the SQVM were compared. In addition, a complete solid-state characterization of SQVM raw material was carried out by techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy, scanning electron microscopy and a dissolution method.

Results

A new salt consisting of SQVM and SDS was crystallized and its crystal structure was elucidated and reported herein for the first time. The anionic part of SDS interacts with the cationic segment of SQVM to obtain a new salt designated as SQV-DS, which precipitates. The main difference between the two structures occurs in the c-axis expansion, which increases from 15.966 (5) to 21.1924 (14), respectively.

Conclusions

Some of the strategies to enhance the dissolution rate of poorly aqueous soluble APIs include the use of surfactants such as SDS in the dissolution medium, as well as in the formulated products. However, there have been constant reports of a dissolution rate slowdown by some surfactants. The interaction mechanisms between the APIs and the dissolution medium containing surfactants need to be carefully investigated in current pharmaceutical formulations.

Graphical abstract

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    Article  CAS  Google Scholar 

  2. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53. https://doi.org/10.1016/j.apsb.2015.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chakraborty S, Shukla D, Jain A, Mishra B, Singh S. Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of pH. J Colloid Interface Sci. 2009;335:242–9.

    Article  CAS  Google Scholar 

  4. Aljaberi A, Chatterji A, Dong Z, Shah NH, Malick W, Singhal D, Sandhu HK. Understanding and optimizing the dual excipient functionality of sodium lauryl sulfate in tablet formulation of poorly water soluble drug: wetting and lubrication. Pharm Dev Technol. 2013;18:490–503.

    Article  CAS  Google Scholar 

  5. Fandaruff C, Chelazzi L, Braga D, Cuffini SL, Silva MAS, Resende JALC, Dichiarante E, Grepioni F. Isomorphous salts of anti-HIV saquinavir mesylate: exploring the effect of anion-exchange on its solid-state and dissolution properties. Cryst Growth Des. 2015;15:5233–9. https://doi.org/10.1021/acs.cgd.5b00696.

    Article  CAS  Google Scholar 

  6. Hoffmeister CRD, Fandaruff C, da Costa MA, Cabral LM, Pitta LR, Bilatto SER, Prado LD, Corrêa DS, Tasso L, Silva MAS, Rocha HVA. Efavirenz dissolution enhancement III: colloid milling, pharmacokinetics and electronic tongue evaluation. Eur J Pharm Sci. 2017;99:310–7. https://doi.org/10.1016/j.ejps.2016.12.0327.

    Article  CAS  PubMed  Google Scholar 

  7. Hamed R, Alnadi SH, Awadallah A. The effect of enzymes and sodium lauryl sulfate on the surface tension of dissolution media: toward understanding the solubility and dissolution of carvedilol. AAPS PharmSciTech. 2020;21:146.

    Article  CAS  Google Scholar 

  8. Jon DI, Chang DL. Interactions between an amine functional polymer and an anionic surfactant. J Soc Cosmet Chem. 1990;41:213–25.

    CAS  Google Scholar 

  9. Nokhodchi A, Norouzi-Sani S, Siahi-Shadbad M-R, Lotfipoor F, Saeedi M. The effect of various surfactants on the release rate of propranolol hydrochloride from hydroxypropylmethylcellulose (HPMC)-Eudragit matrices. Eur J Pharm Biopharm. 2002;54:349–56.

    Article  CAS  Google Scholar 

  10. Jain A, Ran Y, Yalkowsky SH. Effect of pH-sodium lauryl sulfate combination on solubilization of PG-300995 (an anti-HIV agent): a technical note. AAPS PharmSciTech. 2004;5:65–7.

    Article  Google Scholar 

  11. Bhattachar SN, Risley DS, Werawatganone P, Aburub A. Weak bases and formation of a less soluble lauryl sulfate salt/complex in sodium lauryl sulfate (SLS) containing media. Int J Pharm. 2011;412:95–8.

    Article  CAS  Google Scholar 

  12. Desai D, Wong B, Huang Y, Ye Q, Tang D, Guo H, Huang M, Timmins P. Surfactant-mediated dissolution of metformin hydrochloride tablets: wetting effects versus ion pairs diffusivity. J Pharm Sci. 2014;103:920–6.

    Article  CAS  Google Scholar 

  13. Guo Y, Wang C, Dun J, Du L, Hawley M, Sun CC. Mechanism for the reduced dissolution of ritonavir tablets by sodium lauryl sulfate. J Pharm Sci. 2019;108:516–24.

    Article  CAS  Google Scholar 

  14. Huang Z, Parikh S, Fish WP. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior. Int J Pharm. 2018;535:350–9.

    Article  CAS  Google Scholar 

  15. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm. Res. 1998. p. 11–22. https://doi.org/10.1023/A:1011984216775.

  16. Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm Res. 1999;16(12):1876–82.

    Article  CAS  Google Scholar 

  17. Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, Neu CM, Alam MA, Cohen MJ, Lu X, Xiong L, Zacour BM. First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing. AAPS J. 2019;21:32.

    Article  Google Scholar 

  18. Lu Y, Kim S, Park K. In vitro–in vivo correlation: perspectives on model development. Int J Pharm. 2011;418:142–8.

    Article  CAS  Google Scholar 

  19. Pathak SM, Musmade P, Dengle S, Karthik A, Bhat K, Udupa N. Enhanced oral absorption of saquinavir with methyl-Beta-Cyclodextrin—preparation and in vitro and in vivo evaluation. Eur J Pharm Sci. 2010;41:440–51.

    Article  CAS  Google Scholar 

  20. Mahajan HS, Pingale MH, Agrawal KM. Solubility and dissolution enhancement of saquinavir mesylate by inclusion complexation technique. J Incl Phenom Macrocycl Chem. 2013;76:467–72.

    Article  CAS  Google Scholar 

  21. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1995;12: 413–420.

  22. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.

    Article  Google Scholar 

  23. Beloqui A, Solinís MÁ, Gascón AR, Del Pozo-Rodríguez A, Des Rieux A, Préat V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release. 2013;166:115–23. https://doi.org/10.1016/j.jconrel.2012.12.021.

    Article  CAS  PubMed  Google Scholar 

  24. Bruker. APEX II, Data Collection Software, version 2011.8–0. Madison, WI: Bruker AXS Inc.; 2011.

  25. Bruker. Bruker APEX2, SAINT and SADABS. Madison, WI: Bruker AXS Inc.; 2009.

  26. Sheldrick GM. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv. 2015;71:3–8 http://scripts.iucr.org/cgi-bin/paper?S2053273314026370.

    Article  Google Scholar 

  27. Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A Found Crystallogr. 2008;64:112–22. https://doi.org/10.1107/S0108767307043930.

    Article  CAS  Google Scholar 

  28. Dolomanov O V., Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2 : a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009;42:339–341.

  29. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. Mercury : visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39:453–7.

    Article  CAS  Google Scholar 

  30. FDA. Guindance for Industry Q2B Validation of Analytical Procedures: Methodology https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2a-text-validation-analytical-procedures. Accessed 28 June 2021.

  31. Branham ML, Moyo T, Govender T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur J Pharm Biopharm. 2012;80:194–202.

    Article  CAS  Google Scholar 

  32. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Deliv Rev. 2001;48:3–26.

    Article  CAS  Google Scholar 

  33. USP-NF 2020 - Issue 2 - United States Pharmacopeia. Saquinavir Mesylate. Rockville, United States Convention, 2020.

  34. Farmacopea Argentina. 2003. https://www.argentina.gob.ar/sites/default/files/libro_segundo.pdf. .

  35. ANVISA. Farmacopeia Brasileira. 2019. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/7987json-file-1. Accessed 28 June 2021.

  36. USP, 2007 - United States Pharmacopeia, The (USP) 30 ed., Rockville, United States Convention, 2007.

  37. Fotaki N, Brown W, Kochling J, Chokshi H, Miao H, Tang K, Gray V. Rationale for selection of dissolution media: three case studies. Dissolution Technol. 2013;20:6–13.

    Article  CAS  Google Scholar 

  38. Park S-H, Choi H-K. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm. 2006;321:35–41.

    Article  CAS  Google Scholar 

  39. Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64:1549–59.

    Article  CAS  Google Scholar 

  40. Pinto EC, Cabral LM, de Sousa VP. Development of a discriminative intrinsic dissolution method for Efavirenz. Dissolution Technol. 2014;21:31–40.

    Article  CAS  Google Scholar 

  41. Panikumar AD, Venkat Raju Y, Sunitha G, Sathesh Babu PR, Subrahmanyam CVS. Development of biorelevant and discriminating method for dissolution of efavirenz and its formulations. Asian J Pharm Clin Res. 2012;5:220–3.

    CAS  Google Scholar 

  42. Honório T da S, Pinto EC, Rocha HVA, Esteves VSD, dos Santos TC, Castro HCR, et al. in vitro–in vivo correlation of Efavirenz tablets using GastroPlus®. AAPS PharmSciTech 2013;14:1244–1254. https://doi.org/10.1208/s12249-013-0016-4.

  43. Ruddy SB, Matuszewska BK, Grim YA, Ostovic D, Storey DE. Design and characterization of a surfactant-enriched tablet formulation for oral delivery of a poorly water-soluble immunosuppressive agent. Int J Pharm. 1999;182:173–86.

    Article  CAS  Google Scholar 

  44. Fandaruff C, Rauber GS, Araya-Sibaja AM, Pereira RN, De Campos CEM, Rocha HVA, et al. Polymorphism of anti-HIV drug efavirenz: investigations on thermodynamic and dissolution properties. Cryst Growth Des. 2014;14:4968–75. https://doi.org/10.1021/cg500509c.

    Article  CAS  Google Scholar 

  45. Fandaruff C, Segatto Silva MA, Galindo Bedor DC, De Santana DP, Rocha HVA, Rebuffi L, et al. Correlation between microstructure and bioequivalence in anti-HIV drug Efavirenz. Eur J Pharm Biopharm. 2015;91:52–8. https://doi.org/10.1016/j.ejpb.2015.01.020.

    Article  CAS  PubMed  Google Scholar 

  46. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73:137–72.

    Article  CAS  Google Scholar 

  47. Rangel-Yagui C de O, Pessoa A, Tavares LC. Micellar solubilization of drugs J Pharm Pharm Sci 2005;8:147–163.

  48. Caon T, Konig RA, Da Cruz ACC, Cardoso SG, Campos CEM, Cuffini SL, et al. Development and physicochemical characterization of saquinavir mesylate solid dispersions using Gelucire 44/14 or PEG 4000 as carrier. Arch Pharm Res. 2013;36:1113–25. https://doi.org/10.1007/s12272-013-0142-2.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Cristália Laboratory (Cristália Produtos Químicos e Farmacêuticos Ltda – São Paulo – Brazil) for donating saquinavir mesylate. The authors are also grateful to CNPq, CAPES, FAPESC, INCT-Catálise/FAPESC and FINEP for their financial support. We would also like to thank Laboratório Central de Microscopia Eletrônica (LCME) at UFSC for their valuable assistance. The authors declare that there are no conflicts of interests regarding this manuscript.

CRediT AUTHORSHIP CONTRIBUTION

Cinira Fandaruff: Investigation, Conceptualization, Formal analysis, Writing-Original Draft, Writing-Review & Editing. Thiago Caon: Validation. Andrea Mariela Araya-Sibaja:Writing-Review & Editing. Gabriela Schneider Rauber: Validation. Marcos Antônio Segatto Silva: Conceptualization, Supervision, Resources. Cláudia Maria Oliveira Simões: Resources. Carlos Eduardo Maduro de Campos: Investigation, Conceptualization, Formal analysis, Resources, Writing-Original Draft. Adailton João Bortoluzzi: Investigation, Conceptualization, Formal analysis, Resources, Writing-Original Draft. Jackson Antônio Lamounier Camargos Resende: Investigation, Conceptualization, Formal analysis, Resources, Writing-Original Draft. Silvia Lucia Cuffini: Investigation, Conceptualization, Supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinira Fandaruff.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandaruff, C., Caon, T., Araya-Sibaja, A.M. et al. A New Saquinavir Mesylate-Sodium Decyl Sulfate Salt Discovered by Serendipity during an Anomalous Dissolution Test. Pharm Res 39, 189–200 (2022). https://doi.org/10.1007/s11095-022-03167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03167-4

KEY WORDS

Navigation