Skip to main content

Advertisement

Log in

Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs.

Methods

CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions.

Results

CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films.

Conclusions

In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

ASD:

Amorphous solid dispersion

AUC:

Area under the curve

CMC:

Critical micelle concentration

CPD:

Clopidogrel

CTAB:

Cetrimonium bromide

DLS:

Dynamic light scattering

GLPS:

Glass liquid phase separation

HLB:

Hydrophilic lipophilic balance

HPLC:

High performance liquid chromatography

LLPS:

Liquid liquid phase separation

LoC:

Limit of Congruency

NMR:

Nuclear magnetic resonance

NTA:

Nanoparticle tracking analysis

PVPVA:

Copovidone

SDS:

Sodium dodecyl sulfate

T g :

Glass transition temperature

TPGS:

D-α-tocopherol polyethylene glycol 1000 succinate

TWN:

Tween 80

UV:

Ultraviolet

References

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res: Off J Am Assoc Pharm Sci. 1995;12:413–20.

    CAS  Google Scholar 

  2. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    CAS  PubMed  Google Scholar 

  3. Indulkar AS, Gao Y, Raina SA, Zhang GGZ, Taylor LS. Exploiting the phenomenon of liquid-liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13:2059–69.

    CAS  PubMed  Google Scholar 

  4. Lu J, et al. Impact of endogenous bile salts on the thermodynamics of supersaturated active pharmaceutical ingredient solutions. Cryst Growth Des. 2017;17:1264–75.

    CAS  Google Scholar 

  5. Indulkar AS, et al. Impact of micellar surfactant on supersaturation and insight into Solubilization mechanisms in supersaturated solutions of Atazanavir. Pharm Res. 2017;34:1276–95.

    CAS  PubMed  Google Scholar 

  6. Coan KED, Shoichet BK. Stoichiometry and physical chemistry of promiscuous aggregate-based inhibitors. J Am Chem Soc. 2008;130:9606–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ilevbare GA, Taylor LS. Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013. https://doi.org/10.1021/cg301679h.

  8. Paus R, Ji Y, Vahle L, Sadowski G. Predicting the solubility advantage of amorphous pharmaceuticals: A novel thermodynamic approach. Mol Pharm. 2015;12:2823–33.

    CAS  PubMed  Google Scholar 

  9. Mosquera-Giraldo LI, Taylor LS. Glass–liquid phase separation in highly supersaturated aqueous solutions of telaprevir. Mol Pharm. 2015;12:496–503.

    CAS  PubMed  Google Scholar 

  10. Indulkar AS, Box KJ, Taylor R, Ruiz R, Taylor LS. pH-dependent liquid-liquid phase separation of highly supersaturated solutions of weakly basic drugs. Mol Pharm. 2015;12:2365–77.

    CAS  PubMed  Google Scholar 

  11. Kesisoglou F, et al. Effect of amorphous nanoparticle size on bioavailability of Anacetrapib in dogs. J Pharm Sci. 2019;108:2917–25.

    CAS  PubMed  Google Scholar 

  12. Que C, et al. Insights into the dissolution behavior of Ledipasvir-Copovidone amorphous solid dispersions: role of drug loading and intermolecular interactions. Mol Pharm. 2019;16:5054–67.

    CAS  PubMed  Google Scholar 

  13. Saboo S, Kestur US, Flaherty DP, Taylor LS. Congruent release of drug and polymer from amorphous solid dispersions: insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition. Mol Pharm. 2020;17:1261–75.

    CAS  PubMed  Google Scholar 

  14. Ganesh AN, Donders EN, Shoichet BK, Shoichet MS. Colloidal aggregation: from screening nuisance to formulation nuance. Nano Today. 2018;19:188–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Raina SA, et al. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm Res. 2015;32:3350–64.

    CAS  PubMed  Google Scholar 

  16. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir-Copovidone amorphous solid dispersions: importance of congruent release for enhanced performance. Mol Pharm. 2019;16:1327–39.

    CAS  PubMed  Google Scholar 

  17. Auch C, Jede C, Harms M, Wagner C, Mäder K. Impact of amorphization and GI physiology on supersaturation and precipitation of poorly soluble weakly basic drugs using a small-scale in vitro transfer model. Int J Pharm. 2020. https://doi.org/10.1016/j.ijpharm.2019.118917.

  18. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000. https://doi.org/10.1016/S0928-0987(00)00181-0.

  19. Wilson V, et al. Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. J Control Release. 2018;292:172–82.

    CAS  PubMed  Google Scholar 

  20. Harmon P, et al. Mechanism of dissolution-induced nanoparticle formation from a Copovidone-based amorphous solid dispersion. Mol Pharm. 2016;13:1467–81.

    CAS  PubMed  Google Scholar 

  21. Stewart AM, et al. Impact of Drug-Rich Colloids of Itraconazole and HPMCAS on Membrane Flux in Vitro and Oral Bioavailability in Rats. Mol Pharm. 2017. https://doi.org/10.1021/acs.molpharmaceut.7b00338.

  22. Sugano K. Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. Int J Pharm. 2010. https://doi.org/10.1016/j.ijpharm.2009.12.014.

  23. Ilevbare GA, Liu H, Pereira J, Edgar KJ, Taylor LS. Influence of additives on the properties of nanodroplets formed in highly supersaturated aqueous solutions of ritonavir. Mol Pharm. 2013;10:3392–403.

    CAS  PubMed  Google Scholar 

  24. Lindfors L, et al. Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations. Langmuir. 2006;22:911–6.

    CAS  PubMed  Google Scholar 

  25. Ueda K, Yamamoto N, Higashi K, Moribe K. Molecular mobility suppression of ibuprofen-rich amorphous Nanodroplets by HPMC revealed by NMR Relaxometry and its significance with respect to crystallization inhibition. Mol Pharm. 2019. https://doi.org/10.1021/acs.molpharmaceut.9b00840.

  26. Urbina-villalba G, Cruz-Barrios E. Influence of creaming and ripening on the aggregation rate of non-ionic Dodecane-in-water Nanoemulsions. Rev del CEIF. 2014;3:22–9.

    Google Scholar 

  27. Sun Y, Deac A, Zhang GGZ. Assessing physical stability of colloidal dispersions using a Turbiscan optical analyzer. Mol Pharm. 2019;16:877–85.

    CAS  PubMed  Google Scholar 

  28. Tadros TF. Applied surfactants: principles and applications: Wiley-VCH Velag GmbH & Co; 2006.

    Google Scholar 

  29. Chen J, Ormes JD, Higgins JD, Taylor LS. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Mol Pharm. 2015;12:533–41.

    CAS  PubMed  Google Scholar 

  30. Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm. 2018;535:379–92.

    CAS  PubMed  Google Scholar 

  31. Solanki NG, et al. Effects of surfactants on Itraconazole-HPMCAS solid dispersion prepared by hot melt extrusion. I: miscibility and drug release. J Pharm Sci. 2018;1–13. https://doi.org/10.1016/j.xphs.2018.10.058.

  32. Tadros TF. 2. Interfacial aspects of pharmaceutical systems. Interfacial Phenom Colloid Stab. 2015. https://doi.org/10.1515/9783110366471-004.

  33. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    CAS  PubMed  Google Scholar 

  34. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50:179–88.

    CAS  PubMed  Google Scholar 

  35. Chavda VP, Shah D. Self-emulsifying delivery systems: One step ahead in improving solubility of poorly soluble drugs. Nanostructures for Cancer Therapy: Elsevier Inc; 2017. https://doi.org/10.1016/B978-0-323-46144-3.00025-8.

    Book  Google Scholar 

  36. Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm. 2014;461:251–7.

    CAS  PubMed  Google Scholar 

  37. Indulkar AS, Gao Y, Raina SA, Zhang GGZ, Taylor LS. Impact of monomeric versus micellar surfactant and surfactant-polymer interactions on nucleation-induction times of Atazanavir from supersaturated solutions. Cryst Growth Des. 2020;20:62–72.

    CAS  Google Scholar 

  38. Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuo PL. Fluorescence probes for critical micelle concentration. Langmuir. 1985;1:352–5.

    PubMed  Google Scholar 

  39. Bhattacharjee S. DLS and zeta potential - what they are and what they are not? J Control Release. 2016;235:337–51.

    CAS  PubMed  Google Scholar 

  40. Claridge TDW. High-resolution NMR techniques in organic chemistry. Chapter 12: Elsevier; 2016. https://doi.org/10.1016/B978-0-08-099986-9/00012-9.

    Book  Google Scholar 

  41. RStudio Team. Rstudio: integrated development environment for R. (2020).

    Google Scholar 

  42. Purohit HS, Taylor LS. Phase behavior of ritonavir amorphous solid dispersions during hydration and dissolution. Pharm Res. 2017;34:2842–61.

    CAS  PubMed  Google Scholar 

  43. Purohit HS, et al. Insights into Nano- and Micron-scale phase separation in amorphous solid dispersions using fluorescence-based techniques in combination with solid state nuclear magnetic resonance spectroscopy. Pharm Res. 2017;34:1364–77.

    CAS  PubMed  Google Scholar 

  44. Wang L, Gaigalas AK, Reipa V. Optical properties of Alexa™ 488 and cy™5 immobilized on a glass surface. Biotechniques. 2005;38:127–31.

    PubMed  Google Scholar 

  45. ICI Americas Inc. The HLB System. A time-saving Guid Emuls Sel. 1980;37:1390–3.

    Google Scholar 

  46. Miraglia DB, Rodríguez JL, Minardi RM, Schulz PC. Critical micelle concentration and HLB of the sodium oleate- hexadecyltrimethylammonium bromide mixed system. J Surfactant Deterg. 2011;14:401–8.

    CAS  Google Scholar 

  47. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33:4889–906.

    CAS  PubMed  Google Scholar 

  48. Fuguet E, Ràfols C, Rosés M, Bosch E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta. 2005:95–100. https://doi.org/10.1016/j.aca.2005.05.069.

  49. Chauhan S, Chauhan MS, Kaushal D, Syal VK, Jyoti J. Study of micellar behavior of SDS and CTAB in aqueous media containing furosemide-A cardiovascular drug. J Solut Chem. 2010;39:622–38.

    CAS  Google Scholar 

  50. Mahmood M, Al-koofee D. Effect of temperature changes on critical micelle concentration for tween series surfactant. Glob J Sci Front Res Chem. 2013;13:1–7.

    Google Scholar 

  51. Patist A, Bhagwat SS, Penfield KW, Aikens P, Shah DO. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactant Deterg. 2000;3:53–8.

    CAS  Google Scholar 

  52. Wan LSC, Lee PFS. CMC of polysorbates. J Pharm Sci. 1974;63:136–7.

    CAS  PubMed  Google Scholar 

  53. Croy SR, Kwon GS. Polysorbate 80 and Cremophor EL micelles Deaggregate and solubilize nystatin at the Core – Corona Interface. J Pharm Sci. 2005;94:2345–54.

    CAS  PubMed  Google Scholar 

  54. Tang X, Huston KJ, Larson RG. Molecular dynamics simulations of structure-property relationships of tween 80 surfactants in water and at interfaces. J Phys Chem B. 2014;118:12907–18.

    CAS  PubMed  Google Scholar 

  55. Amani A, York P, De Waard H, Anwar J. Molecular dynamics simulation of a polysorbate 80 micelle in water. Soft Matter. 2011;7:2900–8.

    CAS  Google Scholar 

  56. Sadoqi M, Lau-cam CA, Wu SH. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry. J Colloid Interface Sci. 2009;333:585–9.

    CAS  PubMed  Google Scholar 

  57. Pant D, Levinger NE. Polar solvation dynamics of H2O and D2O at the surface of zirconia nanoparticles. J Phys Chem B. 1999;103:7846–52.

    CAS  Google Scholar 

  58. Claridge TDW. High-resolution NMR techniques in organic chemistry. Chapter 2: Elsevier; 2016. https://doi.org/10.1016/B978-0-08-099986-9/00002-6.

    Book  Google Scholar 

  59. Apperley DC, et al. Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR. Magn Reson Chem. 2005;43:881–92.

    CAS  PubMed  Google Scholar 

  60. Ueda K, Taylor LS. Polymer type impacts amorphous solubility and drug-rich phase colloidal stability: A mechanistic study using nuclear magnetic resonance spectroscopy. Mol Pharm. 2020. https://doi.org/10.1021/acs.molpharmaceut.0c00061.

  61. Ueda K, Higashi K, Moribe K. Direct NMR monitoring of phase separation behavior of highly supersaturated Nifedipine solution stabilized with Hypromellose derivatives. Mol Pharm. 2017;14:2314–22.

    CAS  PubMed  Google Scholar 

  62. Ueda K, Taylor LS. Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. J Control Release. 2021;330:229–43.

    CAS  PubMed  Google Scholar 

  63. Aguiar J, Carpena P, Molina-Bolívar JA, Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci. 2003;258:116–22.

    CAS  Google Scholar 

  64. Williams RJ, Phillips JN, Mysels KJ. The critical micelle concentration of sodium lauryl sulphate at 25° C. Trans Faraday Soc. 1955;51:728–37.

    CAS  Google Scholar 

  65. Furihata K, Zhang J, Koda M, Miyakawa T, Tanokura M. Broadband WET: A novel technique for quantitative characterization of minor components in foods. Magn Reson Chem. 2014;52:333–8.

    CAS  PubMed  Google Scholar 

  66. Adams RW, Holroyd CM, Aguilar JA, Nilsson M, Morris GA. “Perfecting” WATERGATE: clean proton NMR spectra from aqueous solution. Chem Commun. 2013;49:358–60.

    CAS  Google Scholar 

  67. Maiwald M, Steinhof O, Sleigh C, Bernstein M, Hasse H. Quantitative high-resolution online NMR spectroscopy in pharmaceutical reaction and process monitoring. NMR Spectrosc Pharm Anal. 2008:471–91. https://doi.org/10.1016/B978-0-444-53173-5.00020-2.

  68. Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the role of surfactants in enhancing drug release from amorphous solid dispersions at higher drug loadings. Pharmaceutics. 2021;13:1–22.

    Google Scholar 

  69. Han YR, Ma Y, Lee PI. Impact of phase separation morphology on release mechanism of amorphous solid dispersions. Eur J Pharm Sci. 2019;136:104955.

    CAS  PubMed  Google Scholar 

  70. Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res. 1985;26:781–9.

    CAS  PubMed  Google Scholar 

  71. Sackett DL, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem. 1987;167:228–34.

    CAS  PubMed  Google Scholar 

  72. Zanetti-Domingues LC, Tynan CJ, Rolfe DJ, Clarke DT, Martin-Fernandez M. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One. 2013;8.

  73. Thermo Fisher. Thermo Fisher Scientific. https://www.thermofisher.com/us/en/home/brands/molecular-probes/key-molecular-probes-products/alexa-fluor/alexa-fluor-frequently-asked-questions.html#chem. Accessed 9 July 2021.

  74. De Aguiar HB, Strader ML, De Beer AGF, Roke S. Surface structure of sodium dodecyl sulfate surfactant and oil at the oil-in-water droplet liquid/liquid interface: A manifestation of a nonequilibrium surface state. J Phys Chem B. 2011;115:2970–8.

    PubMed  Google Scholar 

  75. Stache H. Anionic surfactants: organic chemistry: Marcel Dekker; 1996.

    Google Scholar 

  76. Magee RW. Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem Technol. 1994;68:11–4.

    Google Scholar 

  77. Saboo S, Moseson DE, Kestur US, Taylor LS. Patterns of drug release as a function of drug loading from amorphous solid dispersions: A comparison of five different polymers. Eur J Pharm Sci. 2020;155:105514.

    CAS  PubMed  Google Scholar 

  78. Chen Y, et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12:576–89.

    CAS  PubMed  Google Scholar 

  79. Mosquera-Giraldo LI, et al. Influence of polymer and drug loading on the release profile and membrane transport of telaprevir. Mol Pharm. 2018. https://doi.org/10.1021/acs.molpharmaceut.8b00104.

  80. Indulkar AS, et al. Origin of Nanodroplet formation upon dissolution of an amorphous solid dispersion: A mechanistic isotope scrambling study. J Pharm Sci. 2017;106:1998–2008.

    CAS  PubMed  Google Scholar 

  81. Saboo S, Mugheirbi NA, Zemlyanov DY, Kestur US, Taylor LS. Congruent release of drug and polymer: A “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release. 2019;298:68–82.

    CAS  PubMed  Google Scholar 

  82. Papanu JS, Soane SDS, Bell AT, Hess DW. Transport models for swelling and dissolution of thin polymer films. J Appl Polym Sci. 1989;38:859–85.

    CAS  Google Scholar 

  83. Ouano AC, Carothers JA. Dissolution dynamics of some polymers: solvent-polymer boundaries. Polym Eng Sci. 1980;20:160–6.

    Google Scholar 

  84. Yang R, et al. Drug release and Nanodroplet formation from amorphous solid dispersions: insight into the roles of drug physicochemical properties and polymer selection. Mol Pharm. 2021. https://doi.org/10.1021/acs.molpharmaceut.1c00055.

  85. Cooper WJ, Krasicky PD, Rodriguez F. Effects of molecular weight and plasticization on dissolution rates of thin polymer films. Polymer (Guildf). 1985;26:1069–72.

    CAS  Google Scholar 

  86. (2020), N. C. for B. I. PubChem Compound Summary for CID 60606, Clopidogrel. Retrieved November 19, 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Clopidogrel. Accessed 19 Nov 2020.

  87. Qi S, et al. Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res. 2013;30:290–302.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoff G. Z. Zhang or Lynne S. Taylor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Liquid-liquid phase separation in the presence of surfactants, nanodroplet size stabilization by surfactants, 1H solution NMR spectra and analysis, ASD surface normalized dissolution. (DOCX 1683 kb)

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Abbvie Inc., for the financial support. The authors declare the following competing financial interest(s): Purdue University and AbbVie jointly participated in study design, research, data collection, analysis and interpretation of data, writing, reviewing, and approving the publication. C.C.S. is a graduate students; L.S.T. is a professor; all are at Purdue University. K.U. was a visiting scholar at Purdue University at the time of the study; They all have no additional conflicts of interest to report. A.S.I., Y.G., and G.G.Z.Z. are employees of AbbVie and may own AbbVie stock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa Soto, C.E., Gao, Y., Indulkar, A.S. et al. Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res 39, 167–188 (2022). https://doi.org/10.1007/s11095-021-03159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03159-w

Key words

Navigation