Skip to main content
Log in

pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In amorphous solid dispersions (ASDs), the chemical potential of a drug can be reduced due to mixing with the polymer in the solid matrix, and this can lead to reduced drug release when the polymer is insoluble in the dissolution media. If both the drug and the polymer composing an ASD are ionizable, drug release from the ASD becomes pH-dependent. The goal of this study was to gain insights into the pH-dependent solubility suppression from ASD formulations.

Methods

The maximum release of clotrimazole, a weakly basic drug, from ASDs formulated with insoluble and pH-responsive polymers, was determined as a function of solution pH. Drug-polymer interactions in ASDs were probed using melting point depression, moisture sorption, and solid-state Nuclear Magnetic Resonance spectroscopy (SSNMR) measurements.

Results

The extent of solubility suppression was dependent on polymer type and drug loading. The strength of drug-polymer interactions was found to correlate well with the degree of solubility suppression. For the same ASD, the degree of solubility suppression was nearly constant across the solution pH range studied, suggesting that polymer-drug interactions in residual ASD solids was independent of solution pH. The total drug release agrees with the Henderson-Hasselbalch relationship if the suppressed amorphous solubility of the free drug is independent of solution pH.

Conclusions

The mechanism of solubility suppression at different solution pHs appeared to be drug-polymer interactions in the solid-state, where the concentration of the free drug remains the same at variable pHs and the total drug concentration follows the Henderson-Hasselbalch relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ASD:

Amorphous solid dispersion

CA:

Cellulose acetate

CTZ:

Clotrimazole

CPMAS:

Cross polarization and magic-angle spinning

DL:

Drug loading

DSC:

Differential scanning calorimetry

EC:

Ethylcellulose

EUD EPO:

Eudragit® E PO

EUD L100:

Eudragit® L100

EUD RLPO:

Eudragit® RL PO

HPLC:

High performance liquid chromatography

HPMC:

Hydroxypropyl methylcellulose

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

HPMCP:

Hydroxypropyl methylcellulose phthalate

RH:

Relative humidity

SSNMR:

Solid-state nuclear magnetic resonance

References

  1. Amidon G, Lennernäs H, Shah V, Crison J. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  2. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol. 2000;44(1):235–49.

    Article  CAS  Google Scholar 

  3. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(19):2184–94.

    Article  CAS  PubMed  Google Scholar 

  4. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  5. Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H. When poor solubility becomes an issue: From early stage to proof of concept. Eur J Pharm Sci. 2007;31(5):249–61.

    Article  CAS  PubMed  Google Scholar 

  6. Stainmesse S, Orecchioni AM, Nakache E, Puisieux F, Fessi H. Formation and stabilization of a biodegradable polymeric colloidal suspension of nanoparticles. Colloid Polym Sci. 1995;273(5):505–11.

    Article  CAS  Google Scholar 

  7. Raina S, Zhang GZ, Alonzo D, Wu J, Zhu D, Catron N, et al. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm Res. 2015:1–15.

  8. Dahan A, Beig A, Lindley D, Miller JM. The solubility–permeability interplay and oral drug formulation design: Two heads are better than one. Adv Drug Deliver Rev. 2016;101:99–107.

    Article  CAS  Google Scholar 

  9. Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  10. Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-rich phases induced by amorphous solid dispersion: arbitrary or intentional goal in oral drug delivery? Pharmaceutics. 2021;13(6):889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan X, Xiang T-X, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR. Mol Pharm. 2015;12(12):4518–28.

    Article  CAS  PubMed  Google Scholar 

  12. Aso Y, Yoshioka S. Molecular mobility of nifedipine−PVP and phenobarbital−PVP solid dispersions as measured by 13C-NMR spin-lattice relaxation time. J Pharm Sci. 2006;95(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou D, Schmitt EA, Law D, Brackemeyer PJ, Zhang GGZ. Assessing physical stability risk using the Amorphous Classification System (ACS) based on simple thermal analysis. Mol Pharm. 2019;16(6):2742–54.

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee S. Solubility of organic mixtures in water. Envir Sci Tech. 1984;18(8):587–91.

    Article  CAS  Google Scholar 

  15. Li N, Taylor LS. Tailoring supersaturation from amorphous solid dispersions. J Control Release. 2018;279:114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang S, Mao C, Williams RO III, Yang C-Y. Solubility advantage (and disadvantage) of pharmaceutical amorphous solid dispersions. J Pharm Sci. 2016;105(12):3549–61.

    Article  CAS  PubMed  Google Scholar 

  17. Li N, Ormes JD, Taylor LS. Leaching of lopinavir amorphous solid dispersions in acidic media. Pharm Res. 2016:1–13.

  18. Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res. 2012;29(2):427–40.

    Article  CAS  PubMed  Google Scholar 

  19. Stephenson GA, Aburub A, Woods TA. Physical stability of salts of weak bases in the solid-state. J Pharm Sci. 2011;100(5):1607–17.

    Article  CAS  PubMed  Google Scholar 

  20. Charifson PS, Walters WP. Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem. 2014;57(23):9701–17.

    Article  CAS  PubMed  Google Scholar 

  21. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  22. Curatolo W, Nightingale JA, Herbig SM. Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26(6):1419–31.

    Article  CAS  PubMed  Google Scholar 

  23. Elkhabaz A, Sarkar S, Simpson GJ, Taylor LS. Characterization of phase transformations for amorphous solid dispersions of a weakly basic drug upon dissolution in biorelevant media. Pharm Res. 2019;36(12):174.

    Article  PubMed  Google Scholar 

  24. Maghsoodi M, Nokhodchi A, Oskuei MA, Heidari S. Formulation of cinnarizine for stabilization of its physiologically generated supersaturation. AAPS PharmSciTech. 2019;20(3):139.

    Article  CAS  PubMed  Google Scholar 

  25. Hsieh Y-L, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-Induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53.

    Article  CAS  PubMed  Google Scholar 

  26. Extrand CW. Spin coating of very thin polymer films. Polym Eng Sci. 1994;34(5):390–4.

    Article  CAS  Google Scholar 

  27. Ashland. AquaSolveTM hydroxypropylmethylcellulose acetate succinate: Physical and chemical properties handbook [Available from: http://www.ashland.com/Ashland/Static/Documents/ASI/PC_12624_AquaSolve_AS_Handbook.pdf.

  28. Shin-Etsu. HPMC - for pharmaceutical: Shin-Etsu cellulose [Available from: https://www.metolose.jp/en/pharmaceutical/hpmcp.html.

  29. Jackson MJ, Kestur US, Hussain MA, Taylor LS. Characterization of supersaturated danazol solutions – impact of polymers on solution properties and phase transitions. Pharm Res. 2016;33(5):1276–88.

    Article  CAS  PubMed  Google Scholar 

  30. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211(Supplement C):85–93.

    Article  CAS  PubMed  Google Scholar 

  31. Marsac P, Shamblin S, Taylor L. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  CAS  PubMed  Google Scholar 

  32. Gui Y, McCann EC, Yao X, Li Y, Jones KJ, Yu L. Amorphous drug–polymer salt with high stability under tropical conditions and fast dissolution: the case of clofazimine and poly(acrylic acid). Mol Pharm. 2021;18(3):1364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao X, Neusaenger AL, Yu L. Amorphous drug-polymer salts. Pharmaceutics. 2021;13(8):1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mesallati H, Umerska A, Paluch KJ, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209–23.

    Article  CAS  PubMed  Google Scholar 

  35. Barich DH, Gorman EM, Zell MT, Munson EJ. 3-Methylglutaric acid as a 13C solid-state NMR standard. Solid State Nucl Magn Reson. 2006;30(3):125–9.

    Article  CAS  PubMed  Google Scholar 

  36. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson. 1982;49(2):341–5.

    CAS  Google Scholar 

  37. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  38. Henderson LJ. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol. 1908;21(2):173–9.

    Article  CAS  Google Scholar 

  39. Indulkar AS, Box KJ, Taylor R, Ruiz R, Taylor LS. pH-Dependent liquid–liquid phase separation of highly supersaturated solutions of weakly basic drugs. Mol Pharm. 2015;12(7):2365–77.

    Article  CAS  PubMed  Google Scholar 

  40. Fine-Shamir N, Dahan A. Methacrylate-copolymer eudragit epo as a solubility-enabling excipient for anionic drugs: investigation of drug solubility, intestinal permeability, and their interplay. Mol Pharm. 2019;16(7):2884–91.

    Article  CAS  PubMed  Google Scholar 

  41. Xie T, Gao W, Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531(1):313–23.

    Article  CAS  PubMed  Google Scholar 

  42. Onoue S, Kojo Y, Aoki Y, Kawabata Y, Yamauchi Y, Yamada S. Physicochemical and pharmacokinetic characterization of amorphous solid dispersion of tranilast with enhanced solubility in gastric fluid and improved oral bioavailability. Drug Metab Pharmacokinet. 2012;27(4):379–87.

    Article  CAS  PubMed  Google Scholar 

  43. Lin X, Su L, Li N, Hu Y, Tang G, Liu L, et al. Understanding the mechanism of dissolution enhancement for poorly water-soluble drugs by solid dispersions containing Eudragit® E PO. J Drug Delivery Sci Technol. 2018;48:328–37.

    Article  CAS  Google Scholar 

  44. Crowley KJ, Zografi G. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions. J Pharm Sci. 2002;91(10):2150–65.

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Xu W, Su Y. Solid-state NMR spectroscopy in pharmaceutical sciences. Trends Analyt Chem. 2021;135:116152.

    Article  CAS  Google Scholar 

  46. Mensink MA, Nethercott MJ, Hinrichs WLJ, van der Voort MK, Frijlink HW, Munson EJ, et al. Influence of miscibility of protein-sugar lyophilizates on their storage stability. AAPS J. 2016;18(5):1225–32.

    Article  CAS  PubMed  Google Scholar 

  47. Bovey FA, Mirau PA. The solid-state NMR of polymers. In: Bovey FA, Mirau PA, editors. NMR of polymers. San Diego: Academic Press; 1996. p. 243–352.

    Chapter  Google Scholar 

  48. Aso Y, Yoshioka S, Miyazaki T, Kawanishi T, Tanaka K, Kitamura S, et al. Miscibility of nifedipine and hydrophilic polymers as measured by 1H-NMR spin-lattice relaxation. Chem Pharm Bull. 2007;55(8):1227–31.

    Article  CAS  Google Scholar 

  49. Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2014;11(1):329–37.

    Article  CAS  PubMed  Google Scholar 

  50. Ni QZ, Yang F, Can TV, Sergeyev IV, D’Addio SM, Jawla SK, et al. In situ characterization of pharmaceutical formulations by dynamic nuclear polarization enhanced mas NMR. J Phys Chem B. 2017;121(34):8132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li N, Gilpin CJ, Taylor LS. Understanding the impact of water on the miscibility and microstructure of amorphous solid dispersions: an AFM–LCR and TEM–EDX study. Mol Pharm. 2017;14(5):1691–705.

    Article  CAS  PubMed  Google Scholar 

  52. Rumondor AF, Stanford L, Taylor L. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599–606.

    Article  CAS  PubMed  Google Scholar 

  53. Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  CAS  PubMed  Google Scholar 

  54. DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm. 2008;5(6):968–80.

    Article  CAS  PubMed  Google Scholar 

  55. Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In vitro and in vivo behaviors of kinetisol and spray-dried amorphous solid dispersions of a weakly basic drug and ionic polymer. Mol Pharm. 2020;17(8):2789–808.

    Article  CAS  PubMed  Google Scholar 

  56. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir–copovidone amorphous solid dispersions: importance of congruent release for enhanced performance. Mol Pharm. 2019;16(3):1327–39.

    Article  CAS  PubMed  Google Scholar 

  57. Moseson DE, Parker AS, Beaudoin SP, Taylor LS. Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci. 2020;146:105276.

    Article  CAS  PubMed  Google Scholar 

  58. Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, et al. pH-Dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;17(2):418–26.

    Article  CAS  PubMed  Google Scholar 

  59. Kataoka M, Fukahori M, Ikemura A, Kubota A, Higashino H, Sakuma S, et al. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur J Pharm Biopharm. 2016;101:103–11.

    Article  CAS  PubMed  Google Scholar 

  60. Mitra A, Kesisoglou F, Beauchamp M, Zhu W, Chiti F, Wu Y. Using absorption simulation and gastric ph modulated dog model for formulation development to overcome achlorhydria effect. Mol Pharm. 2011;8(6):2216–23.

    Article  CAS  PubMed  Google Scholar 

  61. Rubbens J, Brouwers J, Tack J, Augustijns P. Gastrointestinal dissolution, supersaturation and precipitation of the weak base indinavir in healthy volunteers. Eur J Pharm Biopharm. 2016;109:122–9.

    Article  CAS  PubMed  Google Scholar 

  62. Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: Case example nelfinavir. Eur J Pharm Biopharm. 2011;79(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  63. Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014;11(4):505–16.

    Article  CAS  PubMed  Google Scholar 

  64. Derendorf H, VanderMaelen CP, Brickl R-S, MacGregor TR, Eisert W. Dipyridamole bioavailability in subjects with reduced gastric acidity. J Clin Pharmacol. 2005;45(7):845–50.

    Article  CAS  PubMed  Google Scholar 

  65. Hens B, Tsume Y, Bermejo M, Paixao P, Koenigsknecht MJ, Baker JR, et al. Low buffer capacity and alternating motility along the human gastrointestinal tract: implications for in vivo dissolution and absorption of ionizable drugs. Mol Pharm. 2017;14(12):4281–94.

  66. Shim JB, Lee JK, Jo H, Hwang JH, Jeong SM, Jo JI, et al. Effect of acidifier on the dissolution property of a solid dispersion of raloxifene HCl. Macromol Res. 2013;21(1):42–8.

    Article  CAS  Google Scholar 

  67. Tran TT-D, Tran PH-L, Choi H-G, Han H-K, Lee B-J. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm. 2010;384(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  68. Espinoza R, Hong E, Villafuerte L. Influence of admixed citric acid on the release profile of pelanserin hydrochloride from HPMC matrix tablets. Int J Pharm. 2000;201(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  69. Siepe S, Herrmann W, Borchert H-H, Lueckel B, Kramer A, Ries A, et al. Microenvironmental pH and microviscosity inside pH-controlled matrix tablets: An EPR imaging study. J Control Release. 2006;112(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  70. Siepe S, Lueckel B, Kramer A, Ries A, Gurny R. Assessment of tailor-made HPMC-based matrix minitablets comprising a weakly basic drug compound. Drug Dev Ind Pharm. 2008;34(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  71. Siepe S, Lueckel B, Kramer A, Ries A, Gurny R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm. 2006;316(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  72. Choi J-S, Kwon S-H, Lee S-E, Jang WS, Byeon JC, Jeong HM, et al. Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int J Pharm. 2017;526(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  73. Monschke M, Wagner KG. Amorphous solid dispersions of weak bases with pH-dependent soluble polymers to overcome limited bioavailability due to gastric pH variability – An in-vitro approach. Int J Pharm. 2019;564:162–70.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors gratefully thank Crystal Pharmatech Inc. for supporting this study. We also express thanks to the University of Connecticut for providing startup funding to support AN. The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Additional information

Guest Editor: Vivek Gupta.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Nethercott, M.J., Narula, A. et al. pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs. Pharm Res 39, 2919–2936 (2022). https://doi.org/10.1007/s11095-021-03147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03147-0

KEY WORDS

Navigation