Skip to main content
Log in

Revisit PEG-Induced Precipitation Assay for Protein Solubility Assessment of Monoclonal Antibody Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Protein solubility is an important attribute of pharmaceutical monoclonal antibody (MAb) formulations, particularly at high MAb concentrations. PEG-induced protein precipitation has been routinely used to assess protein solubility. To provide insights for better understanding and implementation of PEG-induced protein precipitation assay, this work compares different solubility measures and examines their relevance to loss of protein solubility in concentrated formulations.

Methods

Solubility of a MAb in 15 formulations was evaluated using PEG-induced precipitation assay. Three apparent protein solubility measures, the middle-point and onset PEG concentrations (cmid and conset) as well as the binding free energy (μB), were obtained from the PEG-induced protein precipitation assay and compared to the DLS protein interaction parameter (kD). Visual inspection of loss of protein solubility in concentrated formulations during storage was used to further examine the discrepancy of protein solubility ranking by these measures.

Results

PEG-induced precipitation assay predicted overall protein solubility ranking similar to that by DLS kD. However, for three formulations with ionic excipients NaCl, Arg·Cl, and Arg·Glu·Cl, PEG-induced precipitation assay yielded more accurate predictions compared to DLS kD measurements. Furthermore, μB showed superior ability in distinguishing protein solubility for these formulations.

Conclusions

This study demonstrated good correlations between the protein solubility measures obtained from PEG-induced precipitation experiments and DLS kD measurement. It also provides one example in which protein solubility ranking by binding free energy is more accurate than the other measures. The results support the theoretical proposition that μB has a potential to serve as standard protein solubility measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toprani VM, Joshi SB, Kueltzo LA, Schwartz RM, Middaugh CR, Volkin DB. A micro-polyethylene glycol precipitation assay as a relative solubility screening tool for monoclonal antibody design and formulation development. J Pharm Sci. 2016;105(8):2319–27.

    Article  CAS  PubMed  Google Scholar 

  2. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  3. Ecker DMC, T. J., Seymour, P. The therapeutic monoclonal antibody product market. BioProcess Int. 2020;18((10)i). https://bioprocessintl.com/business/economics/the-market-for-therapeutic-mab-products/.

  4. Chai Q, Shih J, Weldon C, Phan S, Jones BE. Development of a high-throughput solubility screening assay for use in antibody discovery. MAbs. 2019;11(4):747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Latypov RF, Lomakin A, Meyer JA, Kerwin BA, Vunnum S, et al. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation. Mol Pharm. 2014;11(5):1391–402.

    Article  CAS  PubMed  Google Scholar 

  6. Hamuro L, Kijanka G, Kinderman F, Kropshofer H, Bu DX, Zepeda M, et al. Perspectives on subcutaneous route of administration as an immunogenicity risk factor for therapeutic proteins. J Pharm Sci. 2017;106(10):2946–54.

    Article  CAS  PubMed  Google Scholar 

  7. Gibson TJ, McCarty K, McFadyen IJ, Cash E, Dalmonte P, Hinds KD, et al. Application of a high-throughput screening procedure with PEG-induced precipitation to compare relative protein solubility during formulation development with IgG1 monoclonal antibodies. J Pharm Sci. 2011;100(3):1009–21.

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Roberts CJ. Protein aggregation—mechanisms, detection, and control. Int J Pharm. 2018;550(1–2):251–68.

    Article  CAS  PubMed  Google Scholar 

  9. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30.

    Article  CAS  PubMed  Google Scholar 

  10. Kraus T, Winter G, Engert J. Test models for the evaluation of immunogenicity of protein aggregates. Int J Pharm. 2019;559:192–200.

    Article  CAS  PubMed  Google Scholar 

  11. Yin L, Chen X, Tiwari A, Vicini P, Hickling TP. The role of aggregates of therapeutic protein products in immunogenicity: an evaluation by mathematical modeling. J Immunol Res. 2015;2015:401956.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haney EF, Wu BC, Lee K, Hilchie AL, Hancock REW. Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem Biol. 2017;24(8):969–80.

    Article  CAS  PubMed  Google Scholar 

  13. Loeb J. Proteins and the theory of colloidal behavior. 1st ed. New York: McGraw-Hill Book Company; 1922. p. 292.

    Book  Google Scholar 

  14. Chi EY, Krishnan S, Kendrick BS, Chang BS, Carpenter JF, Randolph TW. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci. 2003;12(5):903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomar DS, Singh SK, Li L, Broulidakis MP, Kumar S. In Silico prediction of diffusion interaction parameter (k(D)), a key indicator of antibody solution behaviors. Pharm Res. 2018;35(10):20.

    Article  Google Scholar 

  16. Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6(32):11.

    Article  Google Scholar 

  17. Woldeyes MA, Qi W, Razinkov VI, Furst EM, Roberts CJ. How well do low- and high-concentration protein interactions predict solution viscosities of monoclonal antibodies? J Pharm Sci. 2019;108(1):142–54.

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Kantor A, Warne N. Application of a PEG precipitation method for solubility screening: a tool for developing high protein concentration formulations. Protein Sci. 2013;22(8):1118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hofmann M, Winzer M, Weber C, Gieseler H. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development. J Pharm Pharmacol. 2018;70(5):648–54.

    Article  CAS  PubMed  Google Scholar 

  20. Curtis RA, Ulrich J, Montaser A, Prausnitz JM, Blanch HW. Protein-protein interactions in concentrated electrolyte solutions—Hofmeister-series effects. Biotechnol Bioeng. 2002;79(4):367–80.

    Article  CAS  PubMed  Google Scholar 

  21. Walchli R, Fanizzi F, Massant J, Arosio P. Relationship of PEG-induced precipitation with protein-protein interactions and aggregation rates of high concentration mAb formulations at 5 degrees C. Eur J Pharm Biopharm. 2020;151:53–60.

    Article  CAS  PubMed  Google Scholar 

  22. Razinkov VI, Kleemann GR. High-throughput formulation development of biopharmaceuticals: practical guide to methods and applications. Boston: Woodhead Publishing; 2017. p. 123.

    Google Scholar 

  23. Wang Y, Lomakin A, Latypov RF, Laubach JP, Hideshima T, Richardson PG, et al. Phase transitions in human IgG solutions. J Chem Phys. 2013;139(12):121904.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O, Benedek GB. Effect of polyethylene glycol on the liquid-liquid phase transition in aqueous protein solutions. Proc Natl Acad Sci USA. 2002;99(22):14165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogers BA, Rembert KB, Poyton MF, Okur HI, Kale AR, Yang T, et al. A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions. Proc Natl Acad Sci USA. 2019;116(32):15784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. ten Wolde PR, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations. Science. 1997;277(5334):1975–8.

    Article  PubMed  Google Scholar 

  27. Lomakin A, Asherie N, Benedek GB. Liquid-solid transition in nuclei of protein crystals. Proc Natl Acad Sci USA. 2003;100(18):10254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harding SE, Johnson P. The concentration-dependence of macromolecular parameters. Biochem J. 1985;231:543–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez E, Scott NE, Wines BD, Hogarth PM, Wheatley AK, Kent SJ, et al. Low pH exposure during immunoglobulin G purification methods results in aggregates that avidly bind fcgamma receptors: implications for measuring Fc dependent antibody functions. Front Immunol. 2019;10:2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matte A. Approaches to the purification, analysis and characterization of antibody-based therapeutics. 1st ed. Amsterdam: Elsevier; 2020. p. 222.

    Google Scholar 

  31. Dauer K, Pfeiffer-Marek S, Kamm W, Wagner KG. Microwell plate-based dynamic light scattering as a high-throughput characterization tool in biopharmaceutical development. Pharmaceutics. 2021;13(2):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorret LL, DeWinter MA, Schwartz DK, Randolph TW. Challenges in predicting protein-protein interactions from measurements of molecular diffusivity. Biophys J. 2016;111(9):1831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blanco MA, Perevozchikova T, Martorana V, Manno M, Roberts CJ. Protein-protein interactions in dilute to concentrated solutions: alpha-chymotrypsinogen in acidic conditions. J Phys Chem B. 2014;118(22):5817–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingham KC. Protein precipitation with polyethylene glycol. Methods in enzymology, vol. 104. Cambridge: Academic Press; 1984. p. 351–6.

    Google Scholar 

  35. Pantuso E, Mastropietro TF, Briuglia ML, Gerard CJJ, Curcio E, Ter Horst JH, et al. On the aggregation and nucleation mechanism of the monoclonal antibody anti-CD20 near liquid-liquid phase separation (LLPS). Sci Rep. 2020;10(1):8902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc. 2004;126(29):8933–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tischer A, Lilie H, Rudolph R, Lange C. L-arginine hydrochloride increases the solubility of folded and unfolded recombinant plasminogen activator rPA. Protein Sci. 2010;19(9):1783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baynes BM, Wang DI, Trout BL. Role of arginine in the stabilization of proteins against aggregation. Biochemistry. 2005;44(12):4919–25.

    Article  CAS  PubMed  Google Scholar 

  39. Shukla D, Trout BL. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility. J Phys Chem B. 2011;115(41):11831–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Lomakin A, Latypov RF, Benedek GB. Phase separation in solutions of monoclonal antibodies and the effect of human serum albumin. Proc Natl Acad Sci USA. 2011;108(40):16606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhat R, Timasheff SN. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992;1(9):1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Annunziata O. Comparison between protein−polyethylene glycol (PEG) interactions and the effect of PEG on protein−protein interactions using the liquid−liquid phase transition. J Phys Chem B. 2007;111(5):1222–30.

    Article  CAS  PubMed  Google Scholar 

  43. Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010;53(14):5061–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle X-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci. 2014;103(6):1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu AY, Castellanos MM, Mattison K, Krueger S, Curtis JE. Studying excipient modulated physical stability and viscosity of monoclonal antibody formulations using small-angle scattering. Mol Pharm. 2019;16(10):4319–38.

    Article  CAS  PubMed  Google Scholar 

  46. Kuznetsov YG, Malkin AJ, McPherson A. The liquid protein phase in crystallization: a case study—intact immunoglobulins. J Cryst Growth. 2001;232(1):30–9.

    Article  CAS  Google Scholar 

  47. Tanaka S, Ataka M. Protein crystallization induced by polyethylene glycol: a model study using apoferritin. J Chem Phys. 2002;117(7):3504–10.

    Article  CAS  Google Scholar 

  48. Asherie N. Protein crystallization and phase diagrams. Methods. 2004;34(3):266–72.

    Article  CAS  PubMed  Google Scholar 

  49. Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys J. 2008;94(2):570–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Asherie N, Lomakin A, Benedek GB. Phase diagram of colloidal solutions. Phys Rev Lett. 1996;77(23):4832–5.

    Article  CAS  PubMed  Google Scholar 

  51. Rowe JB, Cancel RA, Evangelous TD, Flynn RP, Pechenov S, Subramony JA, et al. Metastability gap in the phase diagram of monoclonal IgG antibody. Biophys J. 2017;113(8):1750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements and Disclosures

Michael R. De Felippis (Eli Lilly and Company) is thanked for critically reviewing the manuscript.

Funding

This work was supported by Eli Lilly and Company. The BRD Science and Technology Council of Eli Lilly is gratefully acknowledged for providing funds for the graduate internship of MJS at Lilly. The monoclonal antibody used in this work was produced and provided by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Contributions

ILB, MAW and YW designed the experiments. MJS, MWH, and MAW conducted the experiments. MJS, MAW, and YW analyzed the data. MJS, MAW and YW wrote the manuscript.

Corresponding authors

Correspondence to Mahlet A. Woldeyes or Ying Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scannell, M.J., Hyatt, M.W., Budyak, I.L. et al. Revisit PEG-Induced Precipitation Assay for Protein Solubility Assessment of Monoclonal Antibody Formulations. Pharm Res 38, 1947–1960 (2021). https://doi.org/10.1007/s11095-021-03119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03119-4

Keywords

Navigation