Skip to main content

Advertisement

Log in

Efficacy of Targeted ECO/miR-200c Nanoparticles for Modulating Tumor Microenvironment and Treating Triple Negative Breast Cancer as Non-invasively Monitored by MR Molecular Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effectiveness of targeted ECO/miR-200c in modulating tumor microenvironment and treating triple negative breast cancer (TNBC) using non-invasive magnetic resonance molecular imaging (MRMI) of extradomain B fibronectin (EDB-FN) with a targeted MRI contrast agent.

Methods

MDA-MB-231 and Hs578T TNBC cells were transfected with RGD-PEG-ECO/miR-200c. Invasive and migratory potential was evaluated using transwell, scratch wound, and spheroid formation assays. Athymic nude mice bearing orthotopic MDA-MB-231 and Hs578T xenografts were treated with weekly i.v. injection of RGD-PEG-ECO/miR-200c nanoparticles at 1.0 mg/kg/week RNA for 6 weeks. MRMI of EDB-FN was performed using a targeted contrast agent MT218 [ZD2-N3-Gd(DO3A)] on a 3 T MRS 3000 scanner. T1-weighted images were acquired following intravenous injection of MT218 at dose of 0.1 mmol/kg using a fast spin echo axial sequence with respiratory gating.

Results

Systemic administration of RGD-PEG-ECO/miR-200c nanoparticles in mice bearing orthotopic TNBC xenografts significantly suppressed tumor progression without toxic side-effects. MRMI with MT218 revealed that the treatment significantly suppressed tumor proliferation as compared to the control. MRMI also showed that the miR-200c treatment altered tumor microenvironment by reducing EDB-FN expression, as evidenced by decreased contrast enhancement in both MDA-MB-231 and Hs578T tumors. The reduction of EDB-FN was confirmed by immunohistochemistry.

Conclusions

Targeted delivery of miR-200c with RGD-PEG-ECO/miR-200c nanoparticles effectively modulates tumor microenvironment and suppresses TNBC proliferation in animal models. MRMI of tumor EDB-FN expression is effective to non-invasively monitor tumor response and therapeutic efficacy of RGD-PEG-ECO/miR-200c nanoparticles in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res. 2012;72(19):4883–9.

    Article  CAS  Google Scholar 

  2. Felipe Lima J, Nofech-Mozes S, Bayani J, Bartlett JM. EMT in Breast Carcinoma-A Review. J Clin Med. 2016;5(7):65.

  3. Majumder S, Jacob ST. Emerging role of MicroRNAs in drug-resistant breast Cancer. Gene Expr. 2018;15(3):141–51.

    Article  Google Scholar 

  4. Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol. 2018;144(8):1401–11.

    Article  CAS  Google Scholar 

  5. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.

    Article  CAS  Google Scholar 

  6. Knezevic J, Pfefferle AD, Petrovic I, Greene SB, Perou CM, Rosen JM. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34(49):5997–6006.

    Article  CAS  Google Scholar 

  7. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  CAS  Google Scholar 

  8. Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  CAS  Google Scholar 

  9. Howe EN, Cochrane DR, Richer JK. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Research : BCR. 2011;13(2):R45.

    Article  CAS  Google Scholar 

  10. Mutlu M, Raza U, Saatci Ö, Eyüpoğlu E, Yurdusev E, Şahin Ö. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med. 2016;94(6):629–44.

    Article  CAS  Google Scholar 

  11. Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019;11:25.

    Article  Google Scholar 

  12. Kopp F, Oak PS, Wagner E, Roidl A. miR-200c Sensitizes Breast Cancer Cells to Doxorubicin Treatment by Decreasing TrkB and Bmi1 Expression. PLoS One. 2012;7(11):e50469.

  13. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the MicroRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007;67(17):7972–6.

    Article  CAS  Google Scholar 

  14. Cochrane DR, Howe EN, Spoelstra NS, Richer JK. Loss of miR-200c: a marker of aggressiveness and Chemoresistance in female reproductive cancers. J Oncol. 2010;2010:821717.

    Article  Google Scholar 

  15. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009;8(5):1055–66.

    Article  CAS  Google Scholar 

  16. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol. 2012;32(3):633–51.

    Article  CAS  Google Scholar 

  17. Kawaguchi T, Yan L, Qi Q, Peng X, Gabriel EM, Young J, et al. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Sci Rep. 2017;7(1):15945.

    Article  Google Scholar 

  18. Xu F, He H, Huang W, Lin Y, Luo S, Du Q, et al. Decreased expression of MicroRNA-200 family in human breast cancer is associated with lymph node metastasis. Clin Transl Oncol. 2016;18(3):283–8.

    Article  CAS  Google Scholar 

  19. Bordeleau F, Califano JP, Negron Abril YL, Mason BN, LaValley DJ, Shin SJ, et al. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc Natl Acad Sci U S A. 2015;112(27):8314–9.

    Article  CAS  Google Scholar 

  20. Nolan J, Mahdi AF, Dunne CP, Kiely PA. Collagen and fibronectin promote an aggressive cancer phenotype in breast cancer cells but drive autonomous gene expression patterns. Gene. 2020;761:145024.

    Article  CAS  Google Scholar 

  21. Kumra H, Reinhardt DP. Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev. 2016;97:101–10.

    Article  CAS  Google Scholar 

  22. Loridon-Rosa B, Vielh P, Matsuura H, Clausen H, Cuadrado C, Burtin P. Distribution of Oncofetal fibronectin in human mammary tumors: immunofluorescence study on histological sections. Cancer Res. 1990;50(5):1608–12.

    CAS  PubMed  Google Scholar 

  23. Lyons AJ, Bateman AC, Spedding A, Primrose JN, Mandel U. Oncofetal fibronectin and oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2001;39(6):471–7.

    Article  CAS  Google Scholar 

  24. Vaidya A, Wang H, Qian V, Gilmore H, Lu ZR. Overexpression of Extradomain-B Fibronectin is Associated with Invasion of Breast Cancer Cells. Cells. 2020;9(8):11127–43 

  25. Han Z, Wu X, Roelle S, Chen C, Schiemann WP, Lu Z-R. Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer. Nat Commun. 2017;8(1):692.

    Article  Google Scholar 

  26. Han Z, Zhou Z, Shi X, Wang J, Wu X, Sun D, et al. EDB fibronectin specific peptide for prostate Cancer targeting. Bioconjug Chem. 2015;26(5):830–8.

    Article  CAS  Google Scholar 

  27. Han Z, Cheng H, Parvani JG, Zhou Z, Lu Z-R. Magnetic resonance molecular imaging of metastatic breast cancer by targeting extradomain-B fibronectin in the tumor microenvironment. Magn Reson Med. 2018;79(6):3135–43.

    Article  CAS  Google Scholar 

  28. Ayat NR, Vaidya A, Yeung GA, Buford MN, Hall RC, Qiao PL, et al. Effective MR molecular imaging of triple negative breast Cancer with an EDB-fibronectin-specific contrast agent at reduced doses. Front Oncol. 2019;9:1351.

  29. Vaidya A, Ayat N, Buford M, Wang H, Shankardass A, Zhao Y, et al. Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics. 2020;10(24):11127–43.

    Article  CAS  Google Scholar 

  30. Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Lu Z-R. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple negative breast Cancer. Cancer Res. 2015;75(11):2316–25.

    Article  CAS  Google Scholar 

  31. Vaidya AM, Sun Z, Ayat N, Schilb A, Liu X, Jiang H, et al. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast Cancer therapy. Bioconjug Chem. 2019;30(3):907–19.

    Article  CAS  Google Scholar 

  32. Ayat NR, Sun Z, Sun D, Yin M, Hall RC, Vaidya AM, et al. Formulation of biocompatible targeted ECO/siRNA nanoparticles with long-term stability for clinical translation of RNAi. Nucleic Acid Ther. 2019;29(4):195–207.

    Article  CAS  Google Scholar 

  33. Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu Z-R. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J Control Release. 2013;171(3):296–307.

    Article  CAS  Google Scholar 

  34. Sun D, Sahu B, Gao S, Schur RM, Vaidya AM, Maeda A, et al. Targeted multifunctional lipid ECO plasmid DNA nanoparticles as efficient non-viral gene therapy for Leber’s congenital Amaurosis. Molecular Therapy - Nucleic Acids. 2017;7:42–52.

    Article  CAS  Google Scholar 

  35. Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. Int J Cancer. 2006;118(6):1331–9.

    Article  CAS  Google Scholar 

  36. Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC. Fibronectin in Cancer: Friend or Foe. Cells. 2019;9(1):27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Rong Lu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilb, A.L., Ayat, N.R., Vaidya, A.M. et al. Efficacy of Targeted ECO/miR-200c Nanoparticles for Modulating Tumor Microenvironment and Treating Triple Negative Breast Cancer as Non-invasively Monitored by MR Molecular Imaging. Pharm Res 38, 1405–1418 (2021). https://doi.org/10.1007/s11095-021-03083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03083-z

Key Words

Navigation