Skip to main content

Advertisement

Log in

Chiral Transplacental Pharmacokinetics of Fexofenadine: Impact of P-Glycoprotein Inhibitor Fluoxetine Using the Human Placental Perfusion Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fexofenadine is a well-identified in vivo probe substrate of P-glycoprotein (P-gp) and/or organic anion transporting polypeptide (OATP). This work aimed to investigate the transplacental pharmacokinetics of fexofenadine enantiomers with and without the selective P-gp inhibitor fluoxetine.

Methods

The chiral transplacental pharmacokinetics of fexofenadine-fluoxetine interaction was determined using the ex vivo human placenta perfusion model (n = 4). In the Control period, racemic fexofenadine (75 ng of each enantiomer/ml) was added in the maternal circuit. In the Interaction period, racemic fluoxetine (50 ng of each enantiomer/mL) and racemic fexofenadine (75 ng of each enantiomer/mL) were added to the maternal circulation. In both periods, maternal and fetal perfusate samples were taken over 90 min.

Results

The (S)-(−)- and (R)-(+)-fexofenadine fetal-to-maternal ratio values in Control and Interaction periods were similar (~0.18). The placental transfer rates were similar between (S)-(−)- and (R)-(+)-fexofenadine in both Control (0.0024 vs 0.0019 min−1) and Interaction (0.0019 vs 0.0021 min−1) periods. In both Control and Interaction periods, the enantiomeric fexofenadine ratios [R-(+)/S-(−)] were approximately 1.

Conclusions

Our study showed a low extent, slow rate of non-enantioselective placental transfer of fexofenadine enantiomers, indicating a limited fetal fexofenadine exposure mediated by placental P-gp and/or OATP2B1. The fluoxetine interaction did not affect the non-enantioselective transplacental transfer of fexofenadine. The ex vivo placental perfusion model accurately predicts in vivo placental transfer of fexofenadine enantiomers with remarkably similar values (~0.17), and thus estimates the limited fetal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data sets obtained and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

OATP:

Organic anion transporting polypeptide

P-gp:

P-glycoprotein

References

  1. Hutson JR, Garcia-Bournissen F, Davis A, Koren G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutics drugs. Clin Pharm Ther. 2011;90:67–76.

    Article  CAS  Google Scholar 

  2. Etwel F, Hutson JR, Madadi P, Gareri J, Koren G. Fetal and perinatal exposure to drugs and chemicals: novel biomarkers of risk. Annu Rev Pharmacol Toxicol. 2014;54:295–315.

    Article  CAS  PubMed  Google Scholar 

  3. De Sousa MM, Hirt D, Vinot C, Valade E, Lui G, Pressiat C. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br J Clin Pharmacol. 2016;81:646–57.

    Article  Google Scholar 

  4. Myllynen P, Immonen E, Kummu M, Vähäkangas K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol. 2009;5:1483–99.

    Article  CAS  PubMed  Google Scholar 

  5. Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012;20:736–63.

    Article  CAS  PubMed  Google Scholar 

  6. Ellfolk M, Tornio A, Niemi M, Leinonen MK, Lahesmaa-Korpinen AM, Malm H. Placental transporter-mediated drug interactions and offspring congenital anomalies. Br J Clin Pharmacol. 2020;86:868–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daud ANA, Bergman JEH, Oktora MP, Kerstjens-Frederikse WS, Groen H, Bos JH, et al. Maternal use of drug substrates of placental transporters and the effect of transporter-mediated drug interactions on the risk of congenital anomalies. PLoS One. 2017;12:e0173530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Daud ANA, Bergman JEH, Bakker MK, Wang H, Kerstjens-Frederikse WS, de Walle HEK, et al. P-glycoprotein-mediated drug interactions in pregnancy and changes in the risk of congenital anomalies: a case-reference study. Drug Saf. 2015;38:651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Etwel F, Faught LH, Rieder MJ, Koren G. The risk of adverse pregnancy outcome after first trimester exposure to h1 antihistamines: a systematic review and meta-analysis. Drug Saf. 2017;40:121–32.

    Article  CAS  PubMed  Google Scholar 

  10. Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA. Use of over the-counter medications during pregnancy. Am J Obstet Gynecol. 2005;193:771–7.

    Article  PubMed  Google Scholar 

  11. Li Q, Mitchell AA, Werler MM, Yau WP, Hernandez-Dıaz S. Assessment of antihistamine use in early pregnancy and birth defects. J Allergy Clin Immunol Pract. 2013;1:666–74.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allegra label FDA (2021). Available at https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/20786se8-014,20872se8-011,20625se8-012_allegra_lbl.pdf Accessed 06 March 2021.

  13. Robbins DK, Castles MA, Pack DJ, Bhargava VO, Weir SJ. Dose proportionality and comparison of single and multiple dose pharmacokinetics of fexofenadine (MDL 16455) and its enantiomers in healthy male volunteers. Biopharm Drug Dispos. 1998;19:455–63.

    Article  CAS  PubMed  Google Scholar 

  14. Kusuhara H, Miura M, Yasui-Furukori N, Yoshida K, Akamine Y, Yokochi M, et al. Effect of coadministration of single and multiple doses of rifampicin on the pharmacokinetics of fexofenadine enantiomers in healthy subjects. Drug Metab Dispos. 2013;41:206–13.

    Article  CAS  PubMed  Google Scholar 

  15. Miura M, Uno T, Tateishi T, Suzuki T. Pharmacokinetics of fexofenadine enantiomers in healthy subjects. Chirality. 2007;19:223–7.

    Article  CAS  PubMed  Google Scholar 

  16. Pinto LSR, Vale GT, Moreira FL, Marques MP, Coelho EB, Cavalli RC, et al. Direct chiral LC-MS/MS analysis of fexofenadine enantiomers in plasma and urine with application in a maternal-fetal pharmacokinetic study. J Chrom B. 2020;1145:122094.

    Article  CAS  Google Scholar 

  17. Pinto L, Moreira FL, Nardotto GHB, Cavalli RC, Moisés ECD, Duarte G, et al. Chiral discrimination of P-glycoprotein in parturient women: effect of fluoxetine on maternal-fetal fexofenadine pharmacokinetics. Pharm Res. 2020;37:131.

    Article  CAS  PubMed  Google Scholar 

  18. Chu X, Liao M, Shen H, Yoshida K, Zur AA, Arya V, et al. International transporter consortium. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the international transporter consortium. Clin Pharmacol Ther. 2018;104(5):836–64.

    Article  CAS  PubMed  Google Scholar 

  19. Akamine Y, Miura M. An update on the clinical pharmacokinetics of fexofenadine enantiomers. Expert Opin Drug Metab Toxicol. 2018;14:429–34.

    Article  CAS  PubMed  Google Scholar 

  20. Weiss J, Dormann S-MG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-Glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305:197–204.

    Article  CAS  PubMed  Google Scholar 

  21. Argov M, Kashi R, Peer D, Margalit R. Treatment of resistant human colon cancer xenografts by a fluoxetine–doxorubicin combination enhances therapeutic responses comparable to an aggressive bevacizumab regimen. Cancer Lett. 2009;274:118–25.

    Article  CAS  PubMed  Google Scholar 

  22. Schrickx JA, Fink-Gremmels J. Inhibition of P-glycoprotein by psychotherapeutic drugs in a canine cell model. J Vet Pharmacol Therap. 2014;37:515–7.

    Article  CAS  Google Scholar 

  23. Peer D, Dekel Y, Melikhov D, Margalit R. Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res. 2004;64:7562–9.

    Article  CAS  PubMed  Google Scholar 

  24. Miller RK, Wier PJ, Maulik D, Sant’agnese PA. Human placenta in vitro: characterization during 12 h of dual perfusion. Contrib Gynecol Obster. 1985;13:77–84.

    Article  CAS  Google Scholar 

  25. Bapat P, Pinto LSR, Lubetsky A, Berger H, Koren G. Rivaroxaban transfer across the dually perfused isolated human placental cotyledon. Am J Obstet Gynecol. 2015;213:710.e1–6.

    Article  CAS  Google Scholar 

  26. Bapat P, Pinto LSR, Lubetsky A, Aleksa K, Berger H, Koren G, Ito S. Examining the transplacental passage of apixaban using the dually perfused human placenta. J Thromb Haemost. 2016;14:1436–41.

    Article  CAS  PubMed  Google Scholar 

  27. Sudhakaran S, Rayner CR, Li J, Kong D, Gude NM, Nation RL. Inhibition of placental P-glycoprotein: impact on indinavir transfer to the foetus. Br J Clin Pharmacol. 2007;65:667–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Reynolds F, Knott C. Pharmacokinetics in pregnancy and placental drug transfer. Oxf Rev Reprod Biol. 1989;78–79:150–3.

    Google Scholar 

  29. Hendrick V, Stowe ZN, Altshuler LL, Hwang S, Lee E, Haynes D. Placental passage of antidepressant medications. Am J Psychiatry. 2003;160:993–6.

    Article  PubMed  Google Scholar 

  30. Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos. 2010;38:1623–35.

    Article  CAS  PubMed  Google Scholar 

  31. Mao Q, Ganapathy V, Unadkat JD. Drug transport in the placenta. In: You G, Morris ME, editors. Drug transporters: molecular characterization and role in drug disposition. New Jersey: Wiley; 2014. p. 341–53.

    Google Scholar 

  32. Gavard L, Gil S, Peytavin G, Ceccaldi PF, Ferreira C, Farinotti R, et al. Placental transfer of lopinavir/ritonavir in the ex vivo human cotyledon perfusion model. Am J Obstet Gynecol. 2006;195:296–301.

    Article  CAS  PubMed  Google Scholar 

  33. Rahi M, Heikkinen T, Hakkola J, Hakala K, Wadelius M, Wadelius C, Laine K. Influence of adenosine triphosphate and ABCB1 (MDR1) genotype on the P-glycoprotein-dependent transfer of saquinavir in the dually perfused human placenta. Hum Exp Toxicol. 2008;1(27):65–71.

    Article  CAS  Google Scholar 

  34. Nanovskaya T, Nekhayeva I, Karunaratne N, Audus K, Hankins GD, Ahmed MS. Role of P-glycoprotein in transplacental transfer of methadone. Biochem Pharmacol. 2005;69:1869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gundogdu E, Alvarez IG, Karasulu E. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies. Int J Nanomedicine. 2011;6:1631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol. 2005;289:963–9.

    Article  CAS  Google Scholar 

  37. Garland M. Pharmacology of drug transfer across the placenta. Obstet Gynecol Clin N Am. 1998;25:21–42.

    Article  CAS  Google Scholar 

  38. Sanofi-Aventis (2020). ALLEGRA™, fexofenadine hydrochloride: U.S. prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/20786se8-014,20872se8-011,20625se8-012_allegra_lbl.pdf. Accessed April 05, 2020.

  39. Mölsä M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, Wadelius M, Wadelius C, Laine K. Functional role of P-glycoprotein in the human blood-placental barrier. Clin Pharmacol Ther. 2005;2:123–31.

    Article  CAS  Google Scholar 

  40. Ceccaldi P-F, Gavald L, Mandelbrot L, Rey E, Farinotti R, Treluyer J-M, Gil S. Functional role of P-glycoprotein and binding protein effect on the placental transfer of lopinavir/ritonavir in the ex vivo human perfusion model. Obstet Gynecol Int. 2009;2009:1–6.

    Article  CAS  Google Scholar 

  41. Holcberg G, Sapir O, Tsadkin M, Huleihel M, Lazer S, Katz M, et al. Lack of interaction of digoxin and P-glycoprotein inhibitors, quinidine and verapamil in human placenta in vitro. Eur J Obst Gynecol Reprod Biol. 2003;109:133–7.

    Article  CAS  Google Scholar 

  42. Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, et al. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug−drug interactions. J Med Chem. 2012;55:4740–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimizu M, Fuse K, Okudaira K, Nishigaki R, Maeda K, Kusuhara H, et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos. 2005;33:1477–81.

    Article  CAS  PubMed  Google Scholar 

  44. St-Pierre MV, Hagenbuch B, Ugele B, et al. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab. 2002;87:1856–63.

    Article  CAS  PubMed  Google Scholar 

  45. Sato K, Sugawara J, Sato T, Mizutamari H, Suzuki T, Ito A, et al. Expression of organic anion transporting polypeptide E (OATP-E) in human placenta. Placenta. 2003;24:144–8.

    Article  CAS  PubMed  Google Scholar 

  46. Garg U, Frazee C. Therapeutic drug monitoring in infants and children. In: Clarke W, Dasgupta A, editors. Clinical challenges in therapeutic drug monitoring. Special populations, physiological conditions, and pharmacogenomics. Cambridge, MA: Elsevier; 2016. p. 1–361.

    Google Scholar 

Download references

Financial Support

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; BEX6119/13–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pinto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, L., Bapat, P., de Lima Moreira, F. et al. Chiral Transplacental Pharmacokinetics of Fexofenadine: Impact of P-Glycoprotein Inhibitor Fluoxetine Using the Human Placental Perfusion Model. Pharm Res 38, 647–655 (2021). https://doi.org/10.1007/s11095-021-03035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03035-7

Key Words

Navigation