Skip to main content
Log in

Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Available dry powder inhalers (DPIs) have very poor lung delivery efficiencies in children. The objective of this study was to advance and experimentally test a positive-pressure air-jet DPI for children based on the use of a vertical aerosolization chamber and new patient interfaces that contain a three-dimensional (3D) rod array structure.

Methods

Aerosolization performance of different air-jet DPI designs was first evaluated based on a 10 mg powder fill mass of a spray-dried excipient enhanced growth (EEG) formulation. Devices were actuated with positive pressure using flow rate (10–20 L/min) and inhaled volume (750 ml) conditions consistent with a 5-year-old child. Devices with best performance were connected to different mouthpiece designs to determine the effect on aerosolization and tested for aerosol penetration through a realistic pediatric in vitro mouth-throat model.

Results

Use of the new vertical aerosolization chamber resulted in high quality aerosol formation. Inclusion of a 3D rod array structure in the mouthpiece further reduced aerosol size by approximately 20% compared to conditions without a rod array, and effectively dissipated the turbulent jet leaving the device. Best case device and mouthpiece combinations produced < 2% mouth-throat depositional loss and > 70% lung delivery efficiency based on loaded dose.

Conclusions

In conclusion, use of a 3D rod array in the MP of a positive-pressure air-jet DPI was found to reduce aerosol size by 20%, not significantly increase MP depositional loss, reduce mouth-throat deposition by 6.4-fold and enable lung delivery efficiency as high as 73.4% of loaded dose based on pediatric test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AAV:

Actuation air volume

AS:

Albuterol sulfate

CFD:

Computational fluid dynamics

DPI:

Dry powder inhaler

ED:

Emitted dose

EEG:

Excipient enhanced growth

FPF:

Fine particle fraction

HPLC:

High performance liquid chromatography

LPM:

Liters per minute

MMAD:

Mass median aerodynamic diameter

MP:

Mouthpiece

MT:

Mouth-throat

NGI:

Next Generation Impactor

SD:

Standard deviation

References

  1. Moon C, Smyth HD, Watts AB, Williams RO. Delivery technologies for orally inhaled products: an update. AAPS PharmSciTech. 2019;20:117.

    CAS  PubMed  Google Scholar 

  2. De Boer A, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink H. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14:499–512.

    PubMed  Google Scholar 

  3. Weers JG, Son Y-J, Glusker M, Haynes A, Huang D, Kadrichu N, Le J, Li X, Malcolmson R, Miller DP, Tarara TE, Ung K, Clark A. Idealhalers versus realhalers: is it possible to bypass deposition in the upper respiratory tract? J Aerosol Med Pulm Drug Deliv. 2019;32:55–69.

    PubMed  Google Scholar 

  4. Newman S. Respiratory drug delivery: essential theory and practice. Richmond: RDD Online; 2009.

    Google Scholar 

  5. Below A, Bickmann D, Breitkreutz J. Assessing the performance of two dry powder inhalers in preschool children using an idealized pediatric upper airway model. Int J Pharm. 2013;444:169–74.

    CAS  PubMed  Google Scholar 

  6. Devadason S, Everard M, MacEarlan C, Roller C, Summers Q, Swift P, Borgstrom L, Le Souëf P. Lung deposition from the Turbuhaler in children with cystic fibrosis. Eur Respir J. 1997;10:2023–8.

    CAS  PubMed  Google Scholar 

  7. Lindert S, Below A, Breitkreutz J. Performance of dry powder inhalers with single dosed capsules in preschool children and adults using improved upper airway models. Pharmaceutics. 2014;6:36–51.

    PubMed  PubMed Central  Google Scholar 

  8. Ruzycki CA, Golshahi L, Vehring R, Finlay WH. Comparison of in vitro deposition of pharmaceutical aerosols in an idealized child throat with in vivo deposition in the upper respiratory tract of children. Pharm Res. 2014;31:1525–35.

    CAS  PubMed  Google Scholar 

  9. Pedersen S. How to use a rotahaler. Arch Dis Child. 1986;61:11–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pedersen S, Hansen O, Fuglsang G. Influence of inspiratory flow rate upon the effect of a Turbuhaler. Arch Dis Child. 1990;65:308–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lexmond AJ, Kruizinga TJ, Hagedoorn P, Rottier BL, Frijlink HW, De Boer AH. Effect of inhaler design variables on paediatric use of dry powder inhalers. PLoS One. 2014;9:e99304.

    PubMed  PubMed Central  Google Scholar 

  12. Farkas D, Hindle M, Bonasera S, Bass K, Longest W. Development of an inline dry powder inhaler for oral or trans-nasal aerosol administration to children. J Aerosol Med Pulm Drug Deliv. 2019; https://doi.org/10.1089/jamp.2019.1540.

  13. Farkas D, Hindle M, Longest PW. Development of an inline dry powder inhaler that requires low air volume. J Aerosol Med Pulm Drug Deliv. 2018;31:255–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Farkas D, Hindle M, Longest PW. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy. Int J Pharm. 2018;546:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Farkas D, Hindle M, Longest PW. Efficient nose-to-lung aerosol delivery with an inline DPI requiring low actuation air volume. Pharm Res. 2018;35:194.

    PubMed  PubMed Central  Google Scholar 

  16. Everard ML, Stammers J, Hardy JG, Milner AD. New aerosol delivery system for neonatal ventilator circuits. Arch Dis Child. 1992;67:826–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Behara SRB, Longest PW, Farkas DR, Hindle M. Development of high efficiency ventilation bag actuated dry powder inhalers. Int J Pharm. 2014;465:52–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng B, Tang P, Leung SSY, Dhanani J, Chan H-K. A novel in-line delivery system to administer dry powder mannitol to mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv. 2017;30:100–7.

    CAS  PubMed  Google Scholar 

  19. Okuda T, Tang P, Yu J, Finlay WH, Chan H-K. Powder aerosol delivery through nasal high-flow system: in vitro feasibility and influence of process conditions. Int J Pharm. 2017;533:187–97.

    CAS  PubMed  Google Scholar 

  20. Boc ST, Farkas DR, Longest PW, Hindle M. Aerosolization of spray dried pulmonary surfactant powder using a novel low air volume actuated dry powder inhaler. Respir Drug Deliv 2018. 2018;2:639–42.

    Google Scholar 

  21. Longest W, Farkas D. Development of a new inhaler for high-efficiency dispersion of spray-dried powders using computational fluid dynamics (CFD) modeling. AAPS J. 2019;21:25.

    PubMed  PubMed Central  Google Scholar 

  22. Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Longest W, Farkas D, Bass K, Hindle M. Use of computational fluid dynamics (CFD) dispersion parameters in the development of a new DPI actuated with low air volumes. Pharm Res. 2019;36:110.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bass K, Farkas D, Longest W. Optimizing aerosolization using computational fluid dynamics in a pediatric air-jet dry powder inhaler. AAPS PharmSciTech. 2019;20:329.

    PubMed  PubMed Central  Google Scholar 

  25. Longest PW, Hindle M, Das Choudhuri S, Xi J. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 2008;39:572–91.

    CAS  Google Scholar 

  26. Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–88.

    CAS  PubMed  Google Scholar 

  27. Tian G, Longest PW, Su G, Walenga RL, Hindle M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    CAS  Google Scholar 

  28. DeHaan WH, Finlay WH. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices. J Aerosol Med. 2001;14:361–7.

    CAS  PubMed  Google Scholar 

  29. DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35:309–31.

    CAS  Google Scholar 

  30. Ilie M, Matida EA, Finlay WH. Asymmetrical aerosol deposition in an idealized mouth with a DPI mouthpiece inlet. Aerosol Sci Technol. 2008;42:10–7.

    CAS  Google Scholar 

  31. Matida EA, DeHaan WH, Finlay WH, Lange CF. Simulation of particle deposition in an idealized mouth with different small diameter inlets. Aerosol Sci Technol. 2003;37:924–32.

    CAS  Google Scholar 

  32. Bass K, Longest PW. Development of DPI patient interfaces for improved aerosol delivery to children. AAPS PharmSciTech. 2020; https://doi.org/10.1208/s12249-020-01667-3.

  33. Longest PW, Son Y-J, Holbrook LT, Hindle M. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm Res. 2013;30:1608–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat Rec. 1985;212:368–80.

    CAS  PubMed  Google Scholar 

  35. Golshahi L, Finlay WH. An idealized child throat that mimics average pediatric oropharyngeal deposition. Aerosol Sci Technol. 2012;46:i–iv.

    CAS  Google Scholar 

  36. Wachtel H, Bickmann D, Breitkreutz J, Langguth P. Can pediatric throat models and air flow profiles improve our dose finding strategy. Respir Drug Deliv. 2010;2010:195–204.

    Google Scholar 

  37. Cheng YS. Aerosol deposition in the extrathoracic region. Aerosol Sci Technol. 2003;37:659–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng YS, Zhou Y, Chen BT. Particle deposition in a cast of human oral airways. Aerosol Sci Technol. 1999;31:286–300.

    CAS  Google Scholar 

  39. Xi J, Longest PW. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann Biomed Eng. 2007;35:560–81.

    PubMed  Google Scholar 

  40. ICRP. Human respiratory tract model for radiological protection. New York: Elsevier Science Ltd.; 1994.

    Google Scholar 

  41. Farkas D, Hindle M, Bonasera S, Bass K, Longest W. Development of an inline dry powder inhaler for oral or trans-nasal aerosol administration to children. J Aerosol Med Pulm Drug Deliv. 2019;

  42. Behara SRB, Farkas DR, Hindle M, Longest PW. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications. Pharm Res. 2014;31:360–72.

    CAS  PubMed  Google Scholar 

  43. Son Y-J, Longest PW, Tian G, Hindle M. Evaluation and modification of commercial dry powder inhalers for the aerosolization of submicrometer excipient enhanced growth (EEG) formulation. Eur J Pharm Sci. 2013;49:390–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bass K, Boc S, Hindle M, Dodson K, Longest PW. High-efficiency nose-to-lung aerosol delivery in an infant: development of a validated computational fluid dynamics method. J Aerosol Med Pulm Drug Deliv. 2019; https://doi.org/10.1089/jamp.2018.1490.

  45. Bass K, Longest PW. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J Aerosol Sci. 2018;119:31–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Technol. 2007;41:380–97.

    CAS  Google Scholar 

  47. Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci. 2004;35:1–19.

    CAS  Google Scholar 

  48. Wang Y, James PW. On the effect of anisotropy on the turbulent dispersion and deposition of small particles. Int J Multiphase Flow. 1999;22:551–8.

    Google Scholar 

  49. Roache PJ. Perspective: a method for uniform reporting of grid refinement studies. J Fluid Eng-T Asme. 1994;116:405–13.

    Google Scholar 

  50. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41:952–73.

    CAS  Google Scholar 

  51. Longest PW, Vinchurkar S, Martonen TB. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci. 2006;37:1234–57.

    CAS  Google Scholar 

  52. Farkas DR, Hindle M, Longest PW. Characterization of a new high-dose dry powder inhaler (DPI) based on a fluidized bed design. Ann Biomed Eng. 2015;43:2804–15.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, D., Bonasera, S., Bass, K. et al. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface. Pharm Res 37, 177 (2020). https://doi.org/10.1007/s11095-020-02889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02889-7

Keywords

Navigation