Skip to main content
Log in

Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The effects of particle size and particle surface roughness on the colloidal stability of pressurized pharmaceutical suspensions were investigated using monodisperse spray-dried particles.

Methods

The colloidal stability of multiple suspensions in the propellant HFA227ea was characterized using a shadowgraphic imaging technique and quantitatively compared using an instability index. Model suspensions of monodisperse spray-dried trehalose particles of narrow distributions (GSD < 1.2) and different sizes (MMAD = 5.98 μm, 10.1 μm, 15.5 μm) were measured first to study the dependence of colloidal stability on particle size. Particles with different surface rugosity were then designed by adding different fractions of trileucine, a shell former, and their suspension stability measured to further study the effects of surface roughness on the colloidal stability of pressurized suspensions.

Results

The colloidal stability significantly improved (p < 0.001) from the suspension with 15.5 μm-particles to the suspension with 5.98 μm-particles as quantified by the decreased instability index from 0.63 ± 0.04 to 0.07 ± 0.01, demonstrating a strongly size-dependent colloidal stability. No significant improvement of suspension stability (p > 0.1) was observed at low trileucine fraction at 0.4 % where particles remained relatively smooth until the surface rugosity of the particles was improved by the higher trileucine fractions at 1.0 % and 5.0 %, which was indicated by the substantially decreased instability index from 0.27 ± 0.02 for the suspensions with trehalose model particles to 0.18 ± 0.01 (p < 0.01) and 0.03 ± 0.01 (p < 0.002) respectively.

Conclusions

Surface modification of particles by adding shell formers like trileucine to the feed solutions of spray drying was demonstrated to be a promising method of improving the colloidal stability of pharmaceutical suspensions in pressurized metered dose inhalers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23):1068–75.

    Article  CAS  PubMed  Google Scholar 

  2. Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1–2):109–22.

    Article  CAS  PubMed  Google Scholar 

  3. Huang J, Wigent RJ, Bentzley CM, Schwartz JB. Nifedipine solid dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blend for controlled drug delivery: effect of drug loading on release kinetics. Int J Pharm. 2006;319(1–2):44–54.

    Article  CAS  PubMed  Google Scholar 

  4. Müller RH, MaÈder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  Google Scholar 

  5. Kleinstreuer C, Zhang Z, Donohue J. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195–220.

    Article  CAS  PubMed  Google Scholar 

  6. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1(4):315–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ooi J, Traini D, Boyd BJ, Gaisford S, Young PM. Determination of physical and chemical stability in pressurised metered dose inhalers: potential new techniques. Expert Opin Drug Deliv. 2015;12(10):1661–75.

    Article  PubMed  Google Scholar 

  8. Stein SW, Sheth P, Hodson PD, Myrdal PB. Advances in metered dose inhaler technology: hardware development. AAPS PharmSciTech. 2014;15(2):326–38.

    Article  CAS  PubMed  Google Scholar 

  9. Ivey JW, Vehring R, Finlay WH. Understanding pressurized metered dose inhaler performance. Expert Opin Drug Deliv. 2015;12(6):901–16.

    Article  CAS  PubMed  Google Scholar 

  10. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol. 2004;38(12):1185–205.

    Article  CAS  Google Scholar 

  11. Israelachvili JN. Intermolecular and surface forces: revised third edition: Academic Press; 2011.

  12. Johnson KA. Interfacial phenomena and phase behavior in metered dose inhaler formulations. In: Lung biology in health and disease; 1996. p. 385–415.

    Google Scholar 

  13. Rogueda P. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opin Drug Deliv. 2005;2(4):625–38.

    Article  CAS  PubMed  Google Scholar 

  14. Finlay WH. The mechanics of inhaled pharmaceutical aerosols: an introduction: Academic Press; 2001.

  15. Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arora P, Kumar L, Vohra V, Sarin R, Jaiswal A, Puri M, et al. Evaluating the technique of using inhalation device in COPD and bronchial asthma patients. Respir Med. 2014;108(7):992–8.

    Article  PubMed  Google Scholar 

  17. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  18. Hirst PH, Pitcairn GR, Weers JG, Tarara TE, Clark AR, Dellamary LA, et al. In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharm Res. 2002;19(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  19. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  CAS  PubMed  Google Scholar 

  20. Patravale V, Kulkarni R. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  CAS  PubMed  Google Scholar 

  21. Lieberman HA, Rieger MM, Banker GS. Pharmaceutical dosage forms: disperse systems. New York: Marcel Dekker; 1996.

    Google Scholar 

  22. Smyth HD. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Del Rev. 2003;55(7):807–28.

    Article  CAS  Google Scholar 

  23. Williams RO, Repka M, Liu J. Influence of propellant composition on drug delivery from a pressurized metered-dose inhaler. Drug Dev Ind Pharm. 1998;24(8):763–70.

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Del Rev. 2011;63(6):456–69.

    Article  CAS  Google Scholar 

  25. Selvam P, Peguin RP, Chokshi U, da Rocha SR. Surfactant design for the 1, 1, 1, 2-tetrafluoroethane− water interface: ab initio calculations and in situ high-pressure tensiometry. Langmuir. 2006;22(21):8675–83.

    Article  CAS  PubMed  Google Scholar 

  26. Adi S, Adi H, Tang P, Traini D, H-k C, Young PM. Micro-particle corrugation, adhesion and inhalation aerosol efficiency. Eur J Pharm Sci. 2008;35(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  27. Young PM, Price R, Lewis D, Edge S, Traini D. Under pressure: predicting pressurized metered dose inhaler interactions using the atomic force microscope. J Colloid Interface Sci. 2003;262(1):298–302.

    Article  CAS  PubMed  Google Scholar 

  28. Traini D, Rogueda P, Young P, Price R. Surface energy and interparticle force correlation in model pMDI formulations. Pharm Res. 2005;22(5):816–25.

    Article  CAS  PubMed  Google Scholar 

  29. Traini D, Young PM, Rogueda P, Price R. In vitro investigation of drug particulates interactions and aerosol performance of pressurised metered dose inhalers. Pharm Res. 2007;24(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  30. D’Sa D, Chan H-K, Chrzanowski W. Predicting physical stability in pressurized metered dose inhalers via dwell and instantaneous force colloidal probe microscopy. Eur J Pharm Biopharm. 2014;88(1):129–35.

    Article  PubMed  Google Scholar 

  31. Baldelli A, Vehring R. Analysis of cohesion forces between monodisperse microparticles with rough surfaces. Colloid Surface A. 2016;506:179–89.

    Article  CAS  Google Scholar 

  32. Mengual O, Meunier G, Cayré I, Puech K, Snabre P. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50(2):445–56.

    Article  CAS  PubMed  Google Scholar 

  33. Voss A, Finlay WH. Deagglomeration of dry powder pharmaceutical aerosols. Int J Pharm. 2002;248(1–2):39–50.

    Article  CAS  PubMed  Google Scholar 

  34. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46.

    Article  CAS  Google Scholar 

  35. Lechuga-Ballesteros D, Charan C, Stults CLM, Stevenson CL, Miller DP, Vehring R, et al. Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 2008;97(1):287–302.

    Article  CAS  PubMed  Google Scholar 

  36. Azhdarzadeh M, Shemirani FM, Ruzycki CA, Baldelli A, Ivey J, Barona D, et al. An atomizer to generate monodisperse droplets from high vapor pressure liquids. Atomization Sprays. 2016;26(2):121–34.

    Article  Google Scholar 

  37. Ivey JW, Bhambri P, Church TK, Lewis DA, Vehring R. Experimental investigations of particle formation from propellant and solvent droplets using a monodisperse spray dryer. Aerosol Sci Technol. 2018:1–15.

  38. Sirignano W, Mehring C. Review of theory of distortion and disintegration of liquid streams. Prog Energy Combust Sci. 2000;26(4–6):609–55.

    Article  Google Scholar 

  39. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

  40. Boraey MA, Vehring R. Diffusion controlled formation of microparticles. J Aerosol Sci. 2014;67:131–43.

    Article  CAS  Google Scholar 

  41. Wang H, Barona D, Oladepo S, Williams L, Hoe S, Lechuga-Ballesteros D, et al. Macro-Raman spectroscopy for bulk composition and homogeneity analysis of multi-component pharmaceutical powders. J Pharm Biomed Anal. 2017;141:180–91.

    Article  CAS  PubMed  Google Scholar 

  42. Rouquerol F, Rouquerol J, Sing KS, Llewellyn P, Maurin G. Adsorption by powders and porous solids: principles, methodology and applications: Academic press; 2014.

    Google Scholar 

  43. Wang H, Tan P, Barona D, Li G, Hoe S, Lechuga-Ballesteros D, et al. Characterization of the suspension stability of pharmaceuticals using a Shadowgraphic imaging method. Int J Pharm. 2018;548(1):128–38.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Zografi G. Water vapor absorption into amorphous sucrose-poly (vinyl pyrrolidone) and trehalose–poly (vinyl pyrrolidone) mixtures. J Pharm Sci. 2001;90(9):1375–85.

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Boraey MA, Williams L, Lechuga-Ballesteros D, Vehring R. Low-frequency shift dispersive Raman spectroscopy for the analysis of respirable dosage forms. Int J Pharm. 2014;469(1):197–205.

    Article  CAS  PubMed  Google Scholar 

  46. Hédoux A. Recent developments in the Raman and infrared investigations of amorphous pharmaceuticals and protein formulations: a review. Adv Drug Del Rev. 2016;100:133–46.

    Article  Google Scholar 

  47. Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons; 2012.

    Google Scholar 

  48. Cheng W, Dunn P, Brach R. Surface roughness effects on microparticle adhesion. J Adhes. 2002;78(11):929–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Alberta Ingenuity Fund and the Canadian Foundation for Innovation (CFI). Hui Wang gratefully acknowledges the scholarship support of Alberta Innovates and Alberta Advanced Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Vehring.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Brunauer-Emmett-Teller (BET) Method

According to the BET Eq. 11,

$$ \frac{1}{m\left(\frac{P_0}{P}-1\right)}=\frac{C-1}{m_0C}\left(\frac{P}{P_0}\right)+\frac{1}{m_0C} $$
(11)

where m is the weight of adsorbed gas at a relative pressure P/P0, m0 is the weight of adsorbate constituting a monolayer of surface coverage for each unit mass of sample, and C is the BET constant that is indicative of the adsorbate-adsorbent interaction energy, the krypton adsorption isotherm is plotted as \( 1/m\left(\frac{P_0}{P}-1\right) \) against P/P0, leading to a linearized BET plot shown in Appendix Fig. 15. From Eq.(11), the slope, s, and intercept, i, of the plot can be obtained as:

$$ s=\frac{C-1}{m_0C} $$
(12)

and

$$ i=\frac{1}{m_0C} $$
(13)

The weight of adsorbate gas for a monolayer coverage can therefore be calculated by combining Eqs. (12) and (13) that:

$$ {m}_0=\frac{1}{s+i} $$
(14)

and the BET constant is:

$$ C=1+\frac{s}{i} $$
(15)

Specific surface area of the tested sample, S, can therefore be determined as:

$$ S=\frac{m_0{N}_{\mathrm{A}}{A}_{\mathrm{cr}}}{M_{\mathrm{Kr}}} $$
(16)

in which NA is the Avogadro’s constant, Acr and MKr is the cross-sectional area of a single adsorbate gas molecule and the gas molecular weight respectively. Listed in Appendix Table IV is the measured data and calculated results.

Table IV Data Used for the Determination of Particle Specific Surface Area and BET Constant
Fig. 15
figure 15

Linear region of the krypton adsorption isotherm used for the determination of specific surface area and BET constant

Morphology of Particles Extracted from the Propellant

Fig. 16
figure 16

Images of particles extracted from the propellant showing no significant changes of morphology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Nobes, D.S. & Vehring, R. Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions. Pharm Res 36, 43 (2019). https://doi.org/10.1007/s11095-019-2572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2572-0

Key words

Navigation