Skip to main content
Log in

Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs.

Methods

Here, we use NMR fingerprinting analysis of Fc domains, generated from selected Pfizer mAbs with similar glycosylation patterns, to address this question. Specifically, we use high resolution 2D [13C-1H] NMR spectra of Fc fragments, which fingerprints methyl sidechain bearing residues, to probe the correlation of higher order structure with the storage stability of mAbs. Thermal calorimetric studies were also performed to assess the stability of mAb fragments.

Results

Unlike NMR fingerprinting, thermal melting temperature as obtained from calorimetric studies for the intact mAbs and fragments (Fc and Fab), did not reveal any correlation with the aggregation propensities of mAbs. Despite >97% sequence homology, NMR data suggests that higher order structure of Fc domains could be dynamic and may result in unique conformation(s) in solution.

Conclusion

The overall glycosylation pattern of these mAbs being similar, these conformation(s) could be linked to the inherent plasticity of the Fc domain, and may act as early transients to the overall aggregation of mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beck A. Thierry Wurch, Christian Bailly, and Nathalie Corvaia, Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–52.

    Article  CAS  Google Scholar 

  2. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    Article  CAS  Google Scholar 

  3. JM, R., Antibodies to watch in 2017. mAbs, 2017. 9(2): p. 167–181.

  4. Grevys A, et al. Fc engineering of human IgG1 for altered binding to the neonatal fc receptor affects fc effector functions. J Immunol. 2015;194:5497–508.

    Article  CAS  Google Scholar 

  5. Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm. 2012;9:696–707.

    Article  CAS  Google Scholar 

  6. Menzen T, Friess W. Temperature-ramped studies on the aggregation, unfolding, and interaction of a therapeutic monoclonal antibody. J Pharm Sci. 2014;103(2):445–55.

    Article  CAS  Google Scholar 

  7. Nishi H, Miyajima M, Wakiyama N, Kubota K, Hasegawa J, Uchiyama S, et al. Fc domain mediated self-association of an IgG1 monoclonal antibody under a low ionic strength condition. J Biosci Bioeng. 2011;112(4):326–32.

    Article  CAS  Google Scholar 

  8. Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Volkin DB, et al. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life. MAbs. 2015;7(1):84–95.

    Article  CAS  Google Scholar 

  9. Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall’Acqua WF. Structural characterization of a human fc fragment engineered for extended serum half-life. Mol Immunol. 2009;46(8):1750–5.

    Article  CAS  Google Scholar 

  10. Kamerzell TJ, Middaugh CR. The complex inter-relationships between protein flexibility and stability. J Pharm Sci. 2008;97(9):3494–517.

    Article  CAS  Google Scholar 

  11. Vermeer A.W.P, N. Willem, The thermal stability of immunoglobulin: Unfolding and aggregation of a multi-domain protein. Biophys J, 2000. 78(1): p. 394–404.

    Article  CAS  Google Scholar 

  12. Chen SLH, Brodsky Y, Kleemann GR, Latypov RF. The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies. Protein Sci. 2010;19(6):1191–204.

    Article  CAS  Google Scholar 

  13. Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2009;81(7):2644–51.

    Article  CAS  Google Scholar 

  14. Rose RJ, van Berkel PH, van den Bremer ET, Labrijn AF, Vink T, Schuurman J, et al. Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. Mabs. 2013;5(2):219–28.

    Article  Google Scholar 

  15. Zhang A, Hu P, MacGregor P, Xue Y, Fan H, Suchecki P, et al. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem. 2014;86(7):3468–75.

    Article  CAS  Google Scholar 

  16. Burkitt W, Domann P, O'connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010;19(4):826–35.

    Article  CAS  Google Scholar 

  17. Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, et al. Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry. 2013;52(19):3376–89.

    Article  CAS  Google Scholar 

  18. Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, et al. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry. J Pharm Sci. 2013;102(7):2136–51.

    Article  CAS  Google Scholar 

  19. Sekhar A, Kay LE. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci. 2013;110(32):12867–74.

    Article  CAS  Google Scholar 

  20. Arbogast LW, Brinson RG, Marino JP. Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal Chem. 2015;87(7):3556–61.

    Article  CAS  Google Scholar 

  21. Arbogast LW, Delaglio F, Schiel JE, Marino JP. Multivariate analysis of two-dimensional 1H, 13C methyl NMR spectra of monoclonal antibody therapeutics to facilitate assessment of higher order structure. Anal Chem. 2017;89(21):11839.

    Article  CAS  Google Scholar 

  22. Arbogast LW, Brinson RG, Formolo T, Hoopes JT, Marino JP. 2D 1 H N, 15 N correlated NMR methods at natural abundance for obtaining structural maps and statistical comparability of monoclonal antibodies. Pharm Res. 2016;33(2):462–75.

    Article  CAS  Google Scholar 

  23. Japelj B, Ilc G, Marušič J, Senčar J, Kuzman D, Plavec J. Biosimilar structural comparability assessment by NMR: from small proteins to monoclonal antibodies. Sci Rep. 2016;6:32201.

    Article  CAS  Google Scholar 

  24. Garber E, Demarest SJ. A broad range of fab stabilities within a host of therapeutic IgGs. Biochemical and biophysical research communications, 2007. 2007;355(3):751–7.

    Article  CAS  Google Scholar 

  25. Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97(4):1414–26.

    Article  CAS  Google Scholar 

  26. Tischenko VM, ZaVyalov VP, Medgyesi GA, Potekhin SA, Privalov PL. A thermodynamic study of cooperative structures in rabbit immunoglobulin G. FEBS J. 1982;3:517–21.

    Google Scholar 

  27. Brandts JF, Hu CQ, Lin LN, Mas MT. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989;28(21):8588–96.

    Article  CAS  Google Scholar 

  28. Sahin E, Weiss WF, Kroetsch AM, King KR, Kessler RK, Das TK, et al. Aggregation and pH–temperature phase behavior for aggregates of an IgG2 antibody. J Pharm Sci. 2012;101(5):1678–87.

    Article  CAS  Google Scholar 

  29. Singh SM, Bandi S, Jones DN, Mallela KM. Effect of Polysorbate 20 and Polysorbate 80 on the higher-order structure of a monoclonal antibody and its fab and fc fragments probed using 2D nuclear magnetic resonance spectroscopy. J Pharm Sci. 2017;106:3486–98.

    Article  CAS  Google Scholar 

  30. Vermeer AW, Norde W, van Amerongen A. The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F ab and F c fragments. Biophys J. 2000;79(4):2150–4.

    Article  CAS  Google Scholar 

  31. Teplyakov A, Zhao Y, Malia TJ, Obmolova G, Gilliland GL. IgG2 fc structure and the dynamic features of the IgG CH 2–CH 3 interface. Mol Immunol. 2013;56(1):131–9.

    Article  CAS  Google Scholar 

  32. Kessler H, Mronga S, Müller G, Moroder L, Huber R. Conformational analysis of a IgG1 hinge peptide derivative in solution determined by NMR spectroscopy and refined by restrained molecular dynamics simulations. Biopolymers. 1991;31(10):1189–204.

    Article  CAS  Google Scholar 

  33. Hanson DC, Yguerabide J, Schumaker VN. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation. Biochemistry. 1981;20(24):6842–52.

    Article  CAS  Google Scholar 

  34. Boehm MK, Woof JM, Kerr MA, Perkins SJ. The fab and fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J Mol Biol. 1999;286(5):1421–47.

    Article  CAS  Google Scholar 

  35. Robustelli P, Stafford KA, Palmer AG III. Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc. 2012;134:6365–74.

    Article  CAS  Google Scholar 

  36. Palmer AG III. Chemical exchange in biomacromolecules: past, present, and future. J Magn Reson. 2014;241:3–17.

    Article  CAS  Google Scholar 

  37. Mittermaier AK, Kay LE. Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci. 2009;34:601–11.

    Article  CAS  Google Scholar 

  38. Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc. 1982;104:4546–59.

    Article  CAS  Google Scholar 

  39. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. Structural analysis of human IgG-fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol. 2003;325(5):979–89.

    Article  CAS  Google Scholar 

  40. Kayser, V., Chennamsetty, N., Voynov, V., Forrer, K., Helk, B., & Trout, B. L, Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J, 2011. 61: p. 38–44.

    Article  Google Scholar 

  41. Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47:5088–100.

    Article  CAS  Google Scholar 

  42. Mittermaier A, Kay LE. New tools provide new insights in NMR studies of protein dynamics. Science. 2006;312:224–8.

    Article  CAS  Google Scholar 

  43. Kitevski-LeBlanc JL, Yuwen T, Dyer PN, Rudolph J, Luger K, Kay LE. Investigating the dynamics of destabilized nucleosomes using methyl-TROSY NMR. J Am Chem Soc. 2018;140(14):4774–7.

    Article  CAS  Google Scholar 

  44. Yagi H, Zhang Y, Yagi-Utsumi M, Yamaguchi T, Iida S, Yamaguchi Y, et al. Backbone 1 H, 13 C, and 15 N resonance assignments of the fc fragment of human immunoglobulin G glycoprotein. Biomolecular NMR assignments. 2015;9:257–60.

    Article  CAS  Google Scholar 

  45. Religa TL, Sprangers R, Kay LE. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science. 2010;328:98–102.

    Article  CAS  Google Scholar 

  46. Teplyakov A, Zhao Y, Malia TJ, Obmolova G, Gilliland GL. IgG2 fc structure and the dynamic features of the IgG CH2–CH3 interface. Mol Immunol. 2013;56:131–9.

    Article  CAS  Google Scholar 

  47. Mittermaier AK, Kay LE. Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci. 2009;12(34):601–11.

    Article  Google Scholar 

  48. Viles JH, Donne D, Kroon G, Prusiner SB, Cohen FE, Dyson HJ, et al. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry. 2001;40(9):2743–53.

    Article  CAS  Google Scholar 

  49. Moorthy BS, Schultz SG, Kim SG, Topp EM. Predicting protein aggregation during storage in lyophilized solids using solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS). Mol Pharm. 2014;11:1869–79.

    Article  CAS  Google Scholar 

  50. Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci. 2013;22(11):1542–51.

    Article  CAS  Google Scholar 

  51. Folch B, Rooman M, Dehouck Y. Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials. J Chem Inf Model. 2008;48(1):119–27.

    Article  CAS  Google Scholar 

  52. Remesh, S.G., Armstrong, A. A., Mahan, A. D., Luo, J., & Hammel, M., Conformational Plasticity of the Immunoglobulin Fc Domain in Solution. Structure, 2018.

  53. Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Competing aggregation pathways for monoclonal antibodies. FEBS Lett. 2014;588(6):936–41.

    Article  CAS  Google Scholar 

  54. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32(7):372–80.

    Article  CAS  Google Scholar 

  55. Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci. 2009;98(9):3013–30.

    Article  Google Scholar 

  56. Booth DR, Sunde M, Bellotti V, Robinson CV. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997;385(6619):787.

    Article  CAS  Google Scholar 

  57. Kjellsson A, Sethson I, Jonsson BH. Hydrogen exchange in a large 29 kD protein and characterization of molten globule aggregation by NMR. Biochemistry. 2003;42:2363–74.

    Article  Google Scholar 

  58. Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov SY, et al. α-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981;136(2):311–5.

    Article  CAS  Google Scholar 

  59. Calzolai L, Lysek DA, Güntert P, von Schroetter C, Riek R, Zahn R, et al. NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci. 2000;97(15):8340–5.

    Article  CAS  Google Scholar 

  60. Pace SE, Joshi SB, Esfandiary R, Stadelman R, Bishop SM, Middaugh CR, et al. The use of a GroEL-BLI biosensor to rapidly assess preaggregate populations for antibody solutions exhibiting different stability profiles. J Pharm Sci. 2018;107:559–70.

    Article  CAS  Google Scholar 

  61. Abedini A, Meng F, Raleigh DP. A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J Am Chem Soc. 2007;129(37):11300–1.

    Article  CAS  Google Scholar 

  62. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003;424(6950):805.

    Article  CAS  Google Scholar 

  63. Iwura T, Fukuda J, Yamazaki K, Kanamaru S, Arisaka F. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals. The Journal of Biochemistry. 2013;155(1):63–71.

    Article  Google Scholar 

  64. Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, et al. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol Pharm. 2015;12:1005.

    Article  CAS  Google Scholar 

  65. Arora J, Joshi SB, Middaugh CR, Weis DD, Volkin DB. Correlating the effects of antimicrobial preservatives on conformational stability, aggregation propensity, and backbone flexibility of an IgG1 mAb. J Pharm Sci. 2017;106(6):1508–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Alphonse Ignatius.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Figure S1

Overlay of 2D [13C-1H] HSQC spectra of mAb-1 Fc (magenta), mAb-2 Fc (red) and mAb-3 Fc (blue). The 2D [13C-1H] NMR spectra of Fc domain shows that the tertiary structure of Fc fragment is nearly identical for all the three mAbs. (PNG 81 kb)

High Resolution (TIF 4802 kb)

Figure S2

Overlay of 2D [13C-1H] HSQC spectra of mAb-1 Fc generated from enzymatic digestion performed on two batches. The near identical spectra shows the robustness of the method. Any changes in crosspeak positions (chemical shift change) are due to chemical changes in local environment due to point mutations.The spectra from batch 1 is indicated in blue and that from batch 2 is indicated in red. (PNG 88 kb)

High Resolution (TIF 350 kb)

Figure S3

SEC-HPLC chromatogram of intact mAb (black), digested mixture (green), purified Fab2 (red) and Fc (blue) domain. The vertical axis indicates UV absorbance and horizontal axis denote elution times. The chromatogram is used to gauge the completion of digestion of enzymatic reaction and to assess purity of the fragments. (PNG 8 kb)

High Resolution (TIF 18 kb)

Figure S4

Mass spectrometric analysis of mAb-2 Fc and mAb-3 Fc. The mass spectra denotes similar glycosylation pattern between the two mAbs Fc. (PNG 56 kb)

High Resolution (TIF 89 kb)

Figure S5

Point mutations of Fc domain can perturb the higher order structure of Fc domain. 2D [15N-1H] HSQC spectra of mAb-3 Fc (yellow) and mAb-2 Fc (blue) indicate distinct chemical shift changes of certain amino acid residues. Each peak corresponds to backbone amide (NH) of different amino acids that make up the Fc domain. The vertical streak in the spectra corresponds to histidine buffer NH peaks. (PNG 169 kb)

High Resolution (TIF 511 kb)

Figure S6

Comparison of a segment of the 2D [13C-1H] NMR spectra of Fc domain of IgG2 mAbs of identical sequence shows molecular fingerprints unique to well behaved mAb. (a) Overlay of mAb-1 Fc and mAb-Control Fc (commercial mAb) shows selected cross peak which are common to both these mAbs marked by rectangle. (b) Overlay of mAb-3 Fc and control mAb Fc shows the absence of the same selected cross peak observed in control mAb Fc but not in mAb-3 Fc. (PNG 64 kb)

High Resolution (TIF 518 kb)

Figure S7

Overlay of a cross section of 2D [13C-1H] spectra of Fc domain of mAb-1 expressed in two different host cells. Differences in post translational modification for the same mAb is not reflected in NMR fingerprinting of Fc in these two cases (blue and red spectrum). (PNG 13 kb)

High Resolution (TIF 183 kb)

Figure S8

Statistical plot of peak amplitudes of mAb-1 Fc, mAb-2 Fc and mAb-3 Fc. (a) Correlation of peak amplitude of 2D [15N-1H] NMR spectrum of mAb-1 Fc and mAb-3 Fc (b) Correlation of peak amplitude of 2D [15N-1H] NMR spectrum of mAb-1 Fc and mAb-2 Fc. (PNG 56 kb)

High Resolution (TIF 335 kb)

Figure S9

Statistical plot of relative peak intensities of mAb-1 Fc, mAb-2 Fc and mAb-3 Fc. The R values suggest higher dissimilarity between mAb-1 Fc and mAb-2 Fc due to point mutation. (a) Correlation of relative peak integrals (intensities) of 2D [13C-1H] NMR spectrum of mAb-1 Fc and mAb-2 Fc (b) Correlation of relative peak integrals (intensities) of 2D [13C -1H] NMR spectrum of mAb-1 Fc and mAb-3 Fc. (PNG 23 kb)

High Resolution (TIF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Jones, M.T., Kimmel, M. et al. Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Pharm Res 35, 220 (2018). https://doi.org/10.1007/s11095-018-2500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2500-8

KEY WORDS

Navigation