Skip to main content

Advertisement

Log in

Crystallization from Supersaturated Solutions: Role of Lecithin and Composite Simulated Intestinal Fluid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The overall purpose of this study was to understand the impact of different biorelevant media types on solubility and crystallization from supersaturated solutions of model compounds (atazanavir, ritonavir, tacrolimus and cilnidipine). The first aim was to understand the influence of the lecithin content in FaSSIF. As the human intestinal fluids (HIFs) contain a variety of bile salts in addition to sodium taurocholate (STC), the second aim was to understand the role of these bile salts (in the presence of lecithin) on solubility and crystallization from supersaturated solutions,

Methods

To study the impact of lecithin, media with 3 mM STC concentration but varying lecithin concentration were prepared. To test the impact of different bile salts, a new biorelevant medium (Composite-SIF) with a composition simulating that found in the fasted HIF was prepared. The crystalline and amorphous solubility was determined in these media. Diffusive flux measurements were performed to determine the true supersaturation ratio at the amorphous solubility of the compounds in various media. Nucleation induction times from supersaturated solutions were measured at an initial concentration equal to the amorphous solubility (equivalent supersaturation) of the compound in the given medium.

Results

It was observed that, with an increase in lecithin content at constant STC concentration (3 mM), the amorphous solubility of atazanavir increased and crystallization was accelerated. However, the crystalline solubility remained fairly constant. Solubility values were higher in FaSSIF compared to Composite-SIF. Longer nucleation induction times were observed for atazanavir, ritonavir and tacrolimus in Composite-SIF compared to FaSSIF at equivalent supersaturation ratios.

Conclusions

This study shows that variations in the composition of SIF can lead to differences in the solubility and crystallization tendency of drug molecules, both of which are critical when evaluating supersaturating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FaSSIF:

Fasted state simulated intestinal fluid

HIF:

Human intestinal fluid

J amorph :

Flux at amorphous solubility

NIT:

Nucleation induction time

SGC:

Sodium glycocholate

SGCDC:

Sodium glycochenodeoxycholate

SGDC:

Sodium glycodeoxycholate

SGUDC:

Sodium glycoursodeoxycholate

SIF:

Simulated intestinal fluid

SR :

Supersaturation ratio

SR amorph :

Supersaturation ratio at amorphous solubility

STC:

Sodiun taurocholate

STCDC:

Sodium taurochenodeoxycholate

STDC:

Sodium taurodeoxycholate

STUDC:

Sodium tauroursodeoxycholate

References

  1. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  CAS  Google Scholar 

  2. Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–85.

    Article  Google Scholar 

  3. Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, et al. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm. 2012;9(7):2063–79.

    Article  CAS  Google Scholar 

  4. Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW, Porter CJ. Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway. Pharm Res. 2013;30(12):2976–92.

    Article  CAS  Google Scholar 

  5. Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS. Supersaturation potential of salt, co-crystal, and amorphous forms of a model weak base. Cryst Growth Des. 2016;16(2):737–48.

    Article  CAS  Google Scholar 

  6. Brouwers J, Tack J, Augustijns P. In vitro behavior of a phosphate ester prodrug of amprenavir in human intestinal fluids and in the Caco-2 system: illustration of intraluminal supersaturation. Int J Pharm. 2007;336(2):302–9.

    Article  CAS  Google Scholar 

  7. Carlert S, Pålsson A, Hanisch G, Von Corswant C, Nilsson C, Lindfors L, et al. Predicting intestinal precipitation—a case example for a basic BCS class II drug. Pharm Res. 2010;27(10):2119–30.

    Article  CAS  Google Scholar 

  8. Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after Administration of two Weak Bases to fasted adults. Pharm Res. 2011;28(12):3145–58.

    Article  CAS  Google Scholar 

  9. Hens B, Brouwers J, Corsetti M, Augustijns P. Supersaturation and precipitation of Posaconazole upon entry in the upper small intestine in humans. J Pharm Sci. 2016;105(9):2677–84.

    Article  CAS  Google Scholar 

  10. Raina SA, Zhang GG, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Impact of solubilizing additives on supersaturation and membrane transport of drugs. Pharm Res. 2015;32(10):3350–64.

    Article  CAS  Google Scholar 

  11. Indulkar AS, Mo H, Gao Y, Raina SA, Zhang GG, Taylor LS. Impact of micellar surfactant on supersaturation and insight into Solubilization mechanisms in supersaturated solutions of Atazanavir. Pharm Res. 2017;34(6):1276–95.

    Article  CAS  Google Scholar 

  12. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.

    Google Scholar 

  13. Twist J, Zatz J. Characterization of solvent-enhanced permeation through a skin model membrane. J Soc Cosmet Chem. 1988;39(5):324.

    Google Scholar 

  14. Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009–16.

    Article  CAS  Google Scholar 

  15. Mullin JW. Nucleation. In. Crystallization (Fourth Edition). Oxford: Butterworth-Heinemann; 2001. p. 181–215.

    Chapter  Google Scholar 

  16. Veesler S, Lafferrère L, Garcia E, Hoff C. Phase transitions in supersaturated drug solution. Org Process Res Dev. 2003;7(6):983–9.

    Article  CAS  Google Scholar 

  17. Iervolino M, Cappello B, Raghavan SL, Hadgraft J. Penetration enhancement of ibuprofen from supersaturated solutions through human skin. Int J Pharm. 2001;212(1):131–41.

    Article  CAS  Google Scholar 

  18. Van Eerdenbrugh B, Taylor LS. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm. 2010;7(4):1328–37.

    Article  Google Scholar 

  19. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times. Cryst Growth Des. 2012;13(2):740–51.

    Article  Google Scholar 

  20. Chen J, Ormes JD, Higgins JD, Taylor LS. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Mol Pharm. 2015;12(2):533–41.

    Article  CAS  Google Scholar 

  21. Gutzow IS, Schmelzer JWP. Catalyzed Crystallization of Glass-Forming Melts. In. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 289–331.

    Chapter  Google Scholar 

  22. Towler CS, Davey RJ, Lancaster RW, Price CJ. Impact of molecular speciation on crystal nucleation in polymorphic systems: the conundrum of γ glycine and molecular ‘self poisoning. J Am Chem Soc. 2004;126(41):13347–53.

    Article  CAS  Google Scholar 

  23. Flaten EM, Seiersten M, Andreassen J-P. Induction time studies of calcium carbonate in ethylene glycol and water. Chem Eng Res Des. 2010;88(12):1659–68.

    Article  CAS  Google Scholar 

  24. Lohani S, Nesmelova IV, Suryanarayanan R, Grant DJ. Spectroscopic characterization of molecular aggregates in solutions: impact on crystallization of indomethacin polymorphs from acetonitrile and ethanol. Cryst Growth Des. 2011;11(6):2368–78.

    Article  CAS  Google Scholar 

  25. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    Article  CAS  Google Scholar 

  26. Carey MC, Small DM. Micelle formation by bile salts: physical-chemical and thermodynamic considerations. Arch Intern Med. 1972;130(4):506–27.

    Article  CAS  Google Scholar 

  27. Wiedmann TS, Liang W, Kamel L. Solubilization of drugs by physiological mixtures of bile salts. Pharm Res. 2002;19(8):1203–8.

    Article  CAS  Google Scholar 

  28. Hammad MA, Müller BW. Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm. 1998;46(3):361–7.

    Article  CAS  Google Scholar 

  29. Chung RS, Johnson GM, Denbesten L. Effect of sodium taurocholate and ethanol on hydrogen ion absorption in rabbit esophagus. Dig Dis Sci. 1977;22(7):582–8.

    Article  CAS  Google Scholar 

  30. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.

    Article  CAS  Google Scholar 

  31. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions. J Pharm Sci. 2015:n/a-n/a.

  32. Chen J, Mosquera-Giraldo LI, Ormes JD, Higgins JD, Taylor LS. Bile salts as crystallization inhibitors of supersaturated solutions of poorly water-soluble compounds. Cryst Growth Des. 2015;15(6):2593–7.

    Article  CAS  Google Scholar 

  33. Li N, Mosquera-Giraldo LI, Borca CH, Ormes JD, Lowinger M, Higgins JD, et al. A comparison of the crystallization inhibition properties of bile salts. Cryst Growth Des. 2016;16(12):7286–300.

    Article  CAS  Google Scholar 

  34. Augustijns P, Wuyts B, Hens B, Annaert P, Butler J, Brouwers J. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption. Eur J Pharm Sci. 2014;57:322–32.

    Article  CAS  Google Scholar 

  35. Ilevbare GA, Taylor LS. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.

    Article  CAS  Google Scholar 

  36. Mullin JW. Solutions and solubility. In. Crystallization (Fourth Edition). Oxford: Butterworth-Heinemann; 2001. p. 86–134.

    Chapter  Google Scholar 

  37. Boni JE, Brickl RS, Dressman J, Pfefferle ML. Instant FaSSIF and FeSSIF-biorelevance meets practicality. Dissolution Technol. 2009;16(3):41–6.

    Article  CAS  Google Scholar 

  38. Kloefer B, van Hoogevest P, Moloney R, Kuentz M, Leigh ML, Dressman J. Study of a standardized taurocholate-lecithin powder for preparing the biorelevant media FeSSIF and FaSSIF. Dissolution Technol 2010;17(3):6–13.

    Article  CAS  Google Scholar 

  39. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.

    Article  CAS  Google Scholar 

  40. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  41. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman J. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.

    Article  CAS  Google Scholar 

  42. Wei H, Löbenberg R. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur J Pharm Sci. 2006;29(1):45–52.

    Article  CAS  Google Scholar 

  43. Sunesen VH, Pedersen BL, Kristensen HG, Müllertz A. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur J Pharm Sci. 2005;24(4):305–13.

    Article  CAS  Google Scholar 

  44. Nicolaides E, Symillides M, Dressman JB, Reppas C. Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration. Pharm Res. 2001;18(3):380–8.

    Article  CAS  Google Scholar 

  45. Dressman JB, Reppas C. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11:S73–80.

    Article  CAS  Google Scholar 

  46. Okumu A, DiMaso M, Löbenberg R. Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharm Res. 2008;25(12):2778–85.

    Article  CAS  Google Scholar 

  47. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663.

    Article  CAS  Google Scholar 

  48. Fuchs A, Leigh M, Kloefer B, Dressman JB. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. Eur J Pharm Biopharm. 2015;94:229–40.

    Article  CAS  Google Scholar 

  49. Bevernage J, Brouwers J, Clarysse S, Vertzoni M, Tack J, Annaert P, et al. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J Pharm Sci. 2010;99(11):4525–34.

    Article  CAS  Google Scholar 

  50. Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8(2):564–70.

    Article  CAS  Google Scholar 

  51. Dressman J, Vertzoni M, Goumas K, Reppas C. Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev. 2007;59(7):591–602.

    Article  CAS  Google Scholar 

  52. Trasi NS, Taylor LS. Thermodynamics of highly supersaturated aqueous solutions of poorly water-soluble drugs—impact of a second drug on the solution phase behavior and implications for combination products. J Pharm Sci. 2015;104(8):2583–93.

    Article  CAS  Google Scholar 

  53. Raina SA, Zhang GG, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103(9):2736–48.

    Article  CAS  Google Scholar 

  54. Indulkar AS, Gao Y, Raina SA, Zhang GG, Taylor LS. Exploiting the phenomenon of liquid–liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13(6):2059–69.

    Article  CAS  Google Scholar 

  55. Stewart AM, Grass ME, Brodeur TJ, Goodwin AK, Morgen MM, Friesen DT, Vodak DT. Impact of Drug-rich Colloids of Itraconazole and HPMCAS on Membrane Flux In Vitro and Oral Bioavailability in Rats. Mol Pharm. 2017.

  56. Simonelli A, Mehta S, Higuchi W. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci. 1969;58(5):538–49.

    Article  CAS  Google Scholar 

  57. Simonelli A, Mehta S, Higuchi W. Dissolution rates of high energy sulfathiazole-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies. J Pharm Sci. 1976;65(3):355–61.

    Article  CAS  Google Scholar 

  58. Kashchiev D, Van Rosmalen G. Review: nucleation in solutions revisited. Cryst Res Technol. 2003;38(7–8):555–74.

    Article  CAS  Google Scholar 

  59. Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors would like to acknowledge AbbVie Inc. for providing research funding for this project. Purdue University and AbbVie jointly participated in study design, research, data collection, analysis and interpretation of data, writing, reviewing, and approving the publication. Anura S. Indulkar was a graduate student at Purdue University. Lynne S. Taylor is a professor at Purdue University. Lynne S. Taylor has no additional conflicts of interest to report. Anura S. Indulkar, Shweta A. Raina, Yi Gao, and Geoff G. Z. Zhang are employees of AbbVie and may own AbbVie stock.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoff G. Z. Zhang or Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indulkar, A.S., Gao, Y., Raina, S.A. et al. Crystallization from Supersaturated Solutions: Role of Lecithin and Composite Simulated Intestinal Fluid. Pharm Res 35, 158 (2018). https://doi.org/10.1007/s11095-018-2441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2441-2

Key words

Navigation