Skip to main content

Advertisement

Log in

Extended Pharmacokinetic Model of the Rabbit Eye for Intravitreal and Intracameral Injections of Macromolecules: Quantitative Analysis of Anterior and Posterior Elimination Pathways

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To extend the physiological features of the anatomically accurate model of the rabbit eye for intravitreal (IVT) and intracameral (IC) injections of macromolecules.

Methods

The computational fluid dynamic model of the rabbit eye by Missel (2012) was extended by enhancing the mixing in the anterior chamber with thermal gradient, heat transfer and gravity, and studying its effect on IC injections of hyaluronic acids. In IVT injections of FITC-dextrans (MW 10–157 kDa) the diffusion though retina was defined based on published in vitro data. Systematic changes in retinal permeability and convective transport were made, and the percentages of anterior and posterior elimination pathways were quantified. Simulations were compared with published in vivo data.

Results

With the enhanced mixing the elimination half-lives of hyaluronic acids after IC injection were 62–100 min that are similar to in vivo data and close to the theoretical value for the well-stirred anterior chamber (57 min). In IVT injections of FITC-dextrans a good match between simulations and in vivo data was obtained when the percentage of anterior elimination pathway was over 80%.

Conclusions

The simulations with the extended model closely resemble in vivo pharmacokinetics, and the model is a valuable tool for data interpretation and predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D/3D:

Two/three-dimensional

AH:

Aqueous humor

AMD:

Age-related macular degeneration

ATM :

Amount of macromolecule eliminated through trabecular meshwork with aqueous drainage

AUCa :

Area under the concentration curve in the aqueous humor

Ca :

Mean concentration of macromolecule in the aqueous humor (anterior chamber)

CFD :

Computational fluid dynamics

Cv :

Mean concentration of macromolecule in the vitreous

D:

Diffusion coefficient of macromolecule in water

Dret :

Apparent diffusion coefficient of macromolecule in retina

f:

Aqueous humor flow rate

FEM:

Finite element modeling

IC:

Intracameral

IOP :

Intraocular pressure

IVT:

Intravitreal

kac :

Elimination rate constant of macromolecule from the anterior chamber

kv :

Elimination rate constant of macromolecule from the vitreous

MRI:

Magnetic resonance imaging

MW:

Molecular weight

Papp :

Apparent permeability coefficient of macromolecule in membrane

PK:

Pharmacokinetics

rH :

Hydrodynamic radius

RPE:

Retinal pigment epithelium

t1/2 :

Elimination half-life

TM :

Trabecular meshwork

Va :

Volume of the anterior chamber

Vv :

Volume of the vitreous

References

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):106–16.

    Article  Google Scholar 

  2. Holz FG, Tadayoni R, Beatty S, Berger A, Cereda MG, Cortez R, et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br J Ophthalmol. 2015;99(2):220–6.

    Article  Google Scholar 

  3. Hutton-Smith LA, Gaffney EA, Byrne HM, Maini PK, Gadkar K, Mazer NA. Ocular pharmacokinetics of therapeutic antibodies given by intravitreal injection: estimation of retinal permeabilities using a 3-compartment semi-mechanistic model. Mol Pharm. 2017;14(8):2690–6.

    Article  CAS  Google Scholar 

  4. Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

    Article  Google Scholar 

  5. Cunha-Vaz JG, Maurice DM. The active transport of fluorescein by the retinal vessels and the retina. J Physiol. 1967;191(3):467–86.

    Article  CAS  Google Scholar 

  6. Araie M, Maurice DM. The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp Eye Res. 1991;52(1):27–39.

    Article  CAS  Google Scholar 

  7. Tan LE, Orilla W, Hughes PM, Tsai S, Burke JA, Wilson CG. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Invest Ophthalmol Vis Sci. 2011;52(2):1111–8.

    Article  CAS  Google Scholar 

  8. Kim H, Lizak MJ, Tansey G, Csaky KG, Robinson MR, Yuan P, et al. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng. 2005;33(2):150–64.

    Article  Google Scholar 

  9. Tojo KJ, Ohtori A. Pharmacokinetic model of intravitreal drug injection. Math Biosci. 1994;123(1):59–75.

    Article  CAS  Google Scholar 

  10. Friedrich S, Cheng YL, Saville B. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann Biomed Eng. 1997;25(2):303–14.

    Article  CAS  Google Scholar 

  11. Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29(12):3251–72.

    Article  CAS  Google Scholar 

  12. Friedrich S, Cheng YL, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16(7):663–9.

    Article  CAS  Google Scholar 

  13. Tojo K, Nakagawa K, Morita Y, Ohtori A. A pharmacokinetic model of intravitreal delivery of ganciclovir. Eur J Pharm Biopharm. 1999;47(2):99–104.

    Article  CAS  Google Scholar 

  14. Stay MS, Xu J, Randolph TW, Barocas VH. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20(1):96–102.

    Article  CAS  Google Scholar 

  15. Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25(11):2685–96.

    Article  CAS  Google Scholar 

  16. Kotha S, Murtomäki L. Virtual pharmacokinetic model of human eye. Math Biosci. 2014;253:11–8.

    Article  CAS  Google Scholar 

  17. Friedrich S, Saville B, Cheng YL. Drug distribution in the vitreous humor of the human eye: the effects of aphakia and changes in retinal permeability and vitreous diffusivity. J Ocul Pharmacol Ther. 1997;13(5):445–59.

    Article  CAS  Google Scholar 

  18. Kathawate J, Acharya S. Computational modeling of intravitreal drug delivery in the vitreous chamber with different vitreous substitutes. Int J Heat Mass Transf. 2008;51(23):5598–609.

    Article  Google Scholar 

  19. Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res. 2011;28(5):1049–64.

    Article  CAS  Google Scholar 

  20. Missel PJ, Horner M, Muralikrishnan R. Simulating dissolution of intravitreal triamcinolone acetonide suspensions in an anatomically accurate rabbit eye model. Pharm Res. 2010;27(8):1530–46.

    Article  CAS  Google Scholar 

  21. Tojo K. A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull. 2004;52(11):1290–4.

    Article  CAS  Google Scholar 

  22. Ueda K, Ohtori A, Tojo K. Effects of pathological conditions on ocular pharmacokinetics of antimicrobial drugs. Chem Pharm Bull. 2010;58(10):1301–5.

    Article  CAS  Google Scholar 

  23. Shikamura Y, Ohtori A, Tojo K. Drug penetration of the posterior eye tissues after topical instillation: in vivo and in silico simulation. Chem Pharm Bull. 2011;59(10):1263–7.

    Article  CAS  Google Scholar 

  24. Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Sinha Roy A, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release. 2005;105(3):279–95.

    Article  CAS  Google Scholar 

  25. Krishnamoorthy MK, Park J, Augsburger JJ, Banerjee RK. Effect of retinal permeability, diffusivity, and aqueous humor hydrodynamics on pharmacokinetics of drugs in the eye. J Ocul Pharmacol Ther. 2008;24(3):255–67.

    Article  CAS  Google Scholar 

  26. Wyatt HJ. Ocular pharmacokinetics and convectional flow: evidence from spatio-temporal analysis of mydriasis. J Ocul Pharmacol Ther. 1996;12(4):441–59.

    Article  CAS  Google Scholar 

  27. Wyatt HJ. Modelling transport in the anterior segment of the eye. Optom Vis Sci. 2004;81(4):272–82.

    Article  Google Scholar 

  28. Canning CR, Greaney MJ, Dewynne JN, Fitt AD. Fluid flow in the anterior chamber of a human eye. IMA J Math Appl Med Biol. 2002;19(1):31–60.

    Article  CAS  Google Scholar 

  29. Heys JJ, Barocas VH. A boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle. Ann Biomed Eng. 2002;30(3):392–401.

    Article  Google Scholar 

  30. Johnson F, Maurice D. A simple method of measuring aqueous humor flow with intravitreal fluoresceinated dextrans. Exp Eye Res. 1984;39(6):791–805.

    Article  CAS  Google Scholar 

  31. Araie M. Time change of rabbit aqueous flow under influence of adrenergic drugs. Exp Eye Res. 1985;41(3):391–403.

    Article  CAS  Google Scholar 

  32. Pitkänen L, Ranta V, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–6.

    Article  Google Scholar 

  33. Cantrill HL, Pederson JE. Experimental retinal detachment. VI. The permeability of the blood-retinal barrier. Arch Ophthalmol. 1984;102(5):747–51.

    Article  CAS  Google Scholar 

  34. Hirata A, Watanabe S, Kojima M, Hata I, Wake K, Taki M, et al. Computational verification of anesthesia effect on temperature variations in rabbit eyes exposed to 2.45 GHz microwave energy. Bioelectromagnetics. 2006;27(8):602–12.

    Article  CAS  Google Scholar 

  35. Ng EYK, Ooi EH. FEM simulation of the eye structure with bio-heat analysis. Comput Methods Prog Biomed. 2006;82(3):268–76.

    Article  CAS  Google Scholar 

  36. Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301–11.

    Article  CAS  Google Scholar 

  37. Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55(3):383–417.

    Article  CAS  Google Scholar 

  38. Karampatzakis A, Samaras T. Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour. Phys Med Biol. 2010;55(19):5653–65.

    Article  Google Scholar 

  39. Schwartz B, Feller MR. Temperature gradients in the rabbit eye. Investig Ophthalmol. 1962;1:513–21.

    CAS  Google Scholar 

  40. Lorget F, Parenteau A, Carrier M, Lambert D, Gueorguieva A, Schuetz C, et al. Characterization of the pH and temperature in the rabbit, pig, and monkey eye: key parameters for the development of long-acting delivery ocular strategies. Mol Pharm. 2016;13(9):2891–6.

    Article  CAS  Google Scholar 

  41. Laurent TC, Ryan M, Pietruszkiewicz A. Fractionation of hyaluronic acid. The polydispersity of hyaluronic acid from the bovine vitreous body. Biochim Biophys Acta. 1960;42:476–85.

    Article  CAS  Google Scholar 

  42. Amirpour N, Karamali F, Razavi S, Esfandiari E, Nasr-Esfahani MH. A proper protocol for isolation of retinal pigment epithelium from rabbit eyes. Adv Biomed Res. 2014;3:4.

    Article  Google Scholar 

  43. Zhou J, He S, Zhang N, Spee C, Zhou P, Ryan SJ, et al. Neutrophils compromise retinal pigment epithelial barrier integrity. J Biomed Biotechnol. 2010;2010:289360.

    PubMed  PubMed Central  Google Scholar 

  44. Braeckmans K, Peeters L, Sanders NN, De Smedt SC, Demeester J. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J. 2003;85(4):2240–52.

    Article  CAS  Google Scholar 

  45. Laurent UB, Fraser JR. Turnover of hyaluronate in the aqueous humour and vitreous body of the rabbit. Exp Eye Res. 1983;36(4):493–503.

    Article  CAS  Google Scholar 

  46. Maurice DM. Injection of drugs into the vitreous body. In: Leopold I, Burns R, editors. Symposium on ocular therapy, vol. 9. London: Wiley; 1976. p. 59–72.

    Google Scholar 

  47. Maurice DM, Mishima S. Ocular pharmacology. In: Sears M, editor. Handbook of experimental pharmacology. Berlin-Heidelberg: Springer-Verlag; 1984. p. 16–119.

    Google Scholar 

  48. Yablonski ME, Hayashi M, Cook DJ, Chubak G, Sirota M. Fluorophotometric study of intravenous carbonic anhydrase inhibitors in rabbits. Invest Ophthalmol Vis Sci. 1987;28(12):2076–82.

    CAS  PubMed  Google Scholar 

  49. Hutton-Smith LA, Gaffney EA, Byrne HM, Maini PK, Schwab D, Mazer NA. A mechanistic model of the intravitreal pharmacokinetics of large molecules and the pharmacodynamic suppression of ocular vascular endothelial growth factor levels by ranibizumab in patients with neovascular age-related macular degeneration. Mol Pharm. 2016;13(9):2941–50.

    Article  CAS  Google Scholar 

  50. Schmitt W. Estimation of intra-vitreal half-lifes in the rabbit eye with semi-mechanistic equations. Pharm Res. 2017;34(1):49–57.

    Article  CAS  Google Scholar 

  51. Maurice DM. Protein dynamics in the eye studied with labelled proteins. Am J Ophthalmol. 1959;47(1 Pt 2):361–8.

    Article  CAS  Google Scholar 

  52. Haghjou N, Abdekhodaie MJ, Cheng Y. Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment. Pharm Res. 2013;30(1):41–59.

    Article  CAS  Google Scholar 

  53. Zhao M, Hejkal JJ, Camras CB, Toris CB. Aqueous humor dynamics during the day and night in juvenile and adult rabbits. Invest Ophthalmol Vis Sci. 2010;51(6):3145–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Lamminsalo.

Electronic Supplementary Material

ESM 1

(DOCX 2.13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamminsalo, M., Taskinen, E., Karvinen, T. et al. Extended Pharmacokinetic Model of the Rabbit Eye for Intravitreal and Intracameral Injections of Macromolecules: Quantitative Analysis of Anterior and Posterior Elimination Pathways. Pharm Res 35, 153 (2018). https://doi.org/10.1007/s11095-018-2435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2435-0

KEY WORDS

Navigation