Skip to main content

Advertisement

Log in

Contribution of Saccadic Motion to Intravitreal Drug Transport: Theoretical Analysis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The vitreous humor liquefies with age and readily sloshes during eye motion. The objective was to develop a computational model to determine the effect of sloshing on intravitreal drug transport for transscleral and intra-vitreal drug sources at various locations

Methods

A finite element model based on a telescopic implicit envelope tracking scheme was developed to model drug dispersion. Flow velocities due to saccadic oscillations were solved for and were used to simulate drug dispersion.

Results

Saccades induced a three-dimensional flow field that indicates intense drug dispersion in the vitreous. Model results showed that the time scale for transport decreased for the sloshing vitreous when compared to static vitreous. Macular concentrations for the sloshing vitreous were found be much higher than that for the static vitreous. For low viscosities the position of the intravitreal source did not have a big impact on drug distribution.

Conclusion

Model results show that care should be taken when extrapolating animal data, which are mostly done on intact vitreous, to old patients whose vitreous might be a liquid. The decrease in drug transport time scales and changes in localized concentrations should be considered when deciding on treatment modalities and dosing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Biorheology. 1992;29:521–33.

    PubMed  CAS  Google Scholar 

  2. Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous. Biorheology. 1994;31:327–38.

    PubMed  Google Scholar 

  3. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225:89–93.

    Article  PubMed  CAS  Google Scholar 

  4. Soman N, Banerjee R. Artificial vitreous replacements. Biomed Mater Eng. 2003;13:59–74.

    PubMed  CAS  Google Scholar 

  5. Harocopos GJ, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45:77–85.

    Article  PubMed  Google Scholar 

  6. Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139:302–10.

    Article  PubMed  Google Scholar 

  7. Stefansson E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol. 2006;51:364–80.

    Article  PubMed  Google Scholar 

  8. Chin H, Park T, Moon Y, Oh J. Difference in clearance of intravitreal traimcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 2005;25:556–60.

    Article  PubMed  Google Scholar 

  9. Doft BH, Weiskopf J, Nilsson-Ehle I, Wingard Jr LB. Amphotericin clearance in vitrectomized versus nonvitrectomized eyes. Ophthalmology. 1985;92:1601–5.

    PubMed  CAS  Google Scholar 

  10. Barton KA, Shui YB, Petrash JM, Beebe DC. Comment on: the Stokes–Einstein equation and the physiological effects of vitreous surgery. Acta Ophthalmol Scand. 2007;85:339–40.

    Article  PubMed  Google Scholar 

  11. Walton KA, Meyer CH, Harkrider CJ, Cox TA, Toth CA. Age-related changes in vitreous mobility as measured by video B scan ultrasound. Exp Eye Res. 2002;74:173–80.

    Article  PubMed  CAS  Google Scholar 

  12. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.

    PubMed  CAS  Google Scholar 

  13. Hegazy HM, Kivilcim M, Peyman GA, Unal MH, Liang C, Molinari LC, et al. Evaluation of toxicity of intravitreal ceftazidime, vancomycin, and ganciclovir in a silicone oil-filled eye. Retina. 1999;19:553–7.

    Article  PubMed  CAS  Google Scholar 

  14. Xu J, Heys JJ, Barocas VH, Randolph TW. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res. 2000;17:664–9.

    Article  PubMed  CAS  Google Scholar 

  15. Stay MS, Xu J, Randolph TW, Barocas VH. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20:96–102.

    Article  PubMed  CAS  Google Scholar 

  16. Araie M, Maurice DM. The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp Eye Res. 1991;52:27–39.

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich S, Cheng YL, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16:663–9.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshida A, Ishiko S, Kojima M. Outward permeability of the blood-retinal barrier. Graefes Arch Clin Exp Ophthalmol. 1992;230:78–83.

    Article  PubMed  CAS  Google Scholar 

  19. Missel PJ. Hydraulic Flow and Vascular Clearance Influences on Intravitreal Drug Delivery. Pharm Res. 2002;19:1636–47.

    Article  PubMed  CAS  Google Scholar 

  20. Repetto R. An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye movements. Meccanica. 2006;41:101–17.

    Article  Google Scholar 

  21. Repetto R, Siggers JH, Stocchino A. Steady streaming within a periodically rotating sphere. J Fluid Mech. 2008;608:71–80.

    Article  Google Scholar 

  22. Repetto R, Stocchino A, Cafferata C. Experimental investigation of vitreous humour motion within a human eye model. Phys Med Biol. 2005;50:4729–43.

    Article  PubMed  Google Scholar 

  23. Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol. 2009;9:65–76.

    Article  PubMed  Google Scholar 

  24. Stocchino A, Repetto R, Cafferata C. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys Med Biol. 2007;52:2021–34.

    Article  PubMed  Google Scholar 

  25. R. K. Balachandran. Computational modeling of drug transport in the posterior eye. (2010).

  26. Becker W. The neurobiology of saccadic eye movements. Metrics Rev Oculomot Res. 1989;3:13–67.

    CAS  Google Scholar 

  27. David T, Smye S, Dabbs T, James T. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys Med Biol. 1998;43:1385–400.

    Article  PubMed  CAS  Google Scholar 

  28. Amestoy PR, L'Excellent JY. MUMPS MUltifrontal Massively Parallel Solver, Version 2.0. J Phys Condens Matter. 1998;10:7975.

    Article  Google Scholar 

  29. Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23:279–96.

    Article  PubMed  CAS  Google Scholar 

  30. Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, et al. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2004;45:2722–31.

    Article  PubMed  Google Scholar 

  31. Balachandran RK, Barocas VH. Computer Modeling of Drug Delivery to the Posterior Eye: Effect of Active Transport and Loss to Choroidal Blood Flow. Pharm Res. 2008;25:2685–96.

    Article  PubMed  CAS  Google Scholar 

  32. Kaiser RJ, Maurice DM. The Diffusion of Fluorescein in the Lens. Exp Eye Res. 1964;3:156–65.

    Article  PubMed  CAS  Google Scholar 

  33. Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 1982;32:199–259.

    Article  Google Scholar 

  34. Petzold LR. An efficient numerical method for highly oscillatory ordinary differential equations. SIAM J Numer Anal. 1981;18:455–79.

    Article  Google Scholar 

  35. Gear C, Kevrekidis I. Telescopic projective integrators for stiff differential equations. J Comput Phys. 2003;187:95–109.

    Article  Google Scholar 

  36. Bettelheim FA, Zigler JS. Regional mapping of molecular components of human liquid vitreous by dynamic light scattering. Exp Eye Res. 2004;79:713–8.

    Article  PubMed  CAS  Google Scholar 

  37. Baum J. Therapy for ocular bacterial infection. Trans Ophthalmol Soc U K. 1986;105(Pt 1):69–77.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Institute for Engineering and Medicine at the University of Minnesota and by the National Institute for Health (R03 EB007815). Simulations were done with the help of the resources provided by the Minnesota Supercomputing Institute (MSI) at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

APPENDIX

APPENDIX

A description and the value of the parameters used in the equations in this section are provided in Table III. For more details on the values and description of the parameters, see (31). c2 and c3 in the following equations represent the concentrations in the retina and the choroid-sclera, respectively.

Table III Parameters Used for Evaluating Flux at the Retinal Surface

A. Flux of Drug from the Vitreous Out of the Eye

The species balance equations in the posterior tissues are given by Eqs. A1 and A2, and the corresponding solution to the equations are given by Eqs. A3 and A4. The flux in the tissues is given by Eqs. A5 and A6 (Fig. 3).

$$ \begin{array}{*{20}{c}} {{D_r}\frac{{{d^2}{c_2}}}{{d{x^2}}} = {K_a}\frac{{d{c_2}}}{{dx}}} \hfill & {0 < x < {L_1}} \hfill \\\end{array} $$
(A1)
$$ \begin{array}{*{20}{c}} {{D_{{cs}}}\frac{{{d^2}{c_3}}}{{d{x^2}}} = \gamma {c_3}} \hfill & {{L_1} < x < {L_2}} \hfill \\\end{array} $$
(A2)
$$ {c_2} = {A_1} + {A_2}{e^{{ax}}} $$
(A3)
$$ {c_3} = {A_3}{e^{{\beta x}}} + {A_4}{e^{{ - \beta x}}} $$
(A4)
$$ flu{x_2} = - {D_r}\frac{{d{c_2}}}{{dx}} + {K_a}{c_2} = {K_a}{A_1} + {A_2}\left( {{K_a}{e^{{ax}}} - {D_r}\alpha {e^{{ax}}}} \right) $$
(A5)
$$ flu{x_3} = - {D_{{cs}}}\frac{{d{c_3}}}{{dx}} = - {D_{{cs}}}\alpha \left( {{A_3}{e^{{\beta x}}} - {A_4}{e^{{ - \beta x}}}} \right) $$
(A6)

A1, A2, A3, and A4 are constants, and alpha and beta in the above equations are defined as

$$ \alpha \equiv \frac{{{K_a}}}{{{D_r}}}{\hbox{and}}\,\beta \equiv \sqrt {{\frac{\gamma }{{{D_{{cs}}}}}}} $$
(A7)

The boundary conditions that were solved simultaneously for A1, A2, A3, and A4, are defined as follows:

$$ \begin{array}{*{20}{c}} {{\hbox{value}},\,{\hbox{x}} = 0,\,{{\left. {{c_2}} \right|}_{{x = 0}}} = {c_v}} \hfill \\{{\hbox{value,}}\,{\hbox{x = }}{{\hbox{L}}_1},\,{{\left. {{c_2}} \right|}_{{x = {L_1}}}} = {{\left. {{c_3}} \right|}_{{x = {L_1}}}}} \hfill \\{{\hbox{flux}},\,{\hbox{x}} = {{\hbox{L}}_1},\,{{\left. {flu{x_2}} \right|}_{{x = {L_1}}}} = {{\left. {flu{x_3}} \right|}_{{x = {L_1}}}}} \hfill \\{{\hbox{flux}},\,{\hbox{x}} = {{\hbox{L}}_2},\,{{\left. {flu{x_2}} \right|}_{{x = {L_2}}}} = {{\left. {{k_{{sc}}}{c_3}} \right|}_{{x = {L_2}}}}} \hfill \\\end{array} $$

The flux of drug at x = 0 which was used in the model (Eq. 8) was evaluated by substituting the constants into either Eqs. A5 or A6.

B. Flux of Drug from a Constant Concentration Transscleral Source into the Vitreous

The choroid and retina were assumed to be ablated under the transscleral drug source. Hence, the species balance equations for transport in the posterior tissues listed above were modified to accommodate the changes as follows:

$$ \begin{array}{*{20}{c}} {{D_r}\frac{{{d^2}{c_2}}}{{d{x^2}}} = 0} \hfill & {{L_1} < x < {L_2}} \hfill \\\end{array} $$
(A8)
$$ \begin{array}{*{20}{c}} {{D_{{cs}}}\frac{{{d^2}{c_3}}}{{d{x^2}}} = 0} \hfill & {0 < x < {L_1}} \hfill \\\end{array} $$
(A9)
$$ {c_2} = {B_1}x + {B_2} $$
(A10)
$$ {c_3} = {B_3}x + {B_4} $$
(A11)
$$ flu{x_2} = - {D_r}\frac{{d{c_2}}}{{dx}} = - {D_r}{B_1} $$
(A12)
$$ flu{x_3} = - {D_{{cs}}}\frac{{d{c_3}}}{{dx}} = - {D_{{cs}}}{B_3} $$
(A13)

As in the previous case, the boundary conditions were solved simultaneously for the constants B1, B2, B3, and B4. The boundary conditions are defined as below:

$$ \begin{array}{*{20}{c}} {{\hbox{value}},\,{\hbox{x}} = 0,\,{{\left. {{c_3}} \right|}_{{x = 0}}} = {c_0}} \hfill \\{{\hbox{value}},\,{\hbox{x}} = {{\hbox{L}}_1},\,{{\left. {{c_3}} \right|}_{{x = {L_1}}}} = {{\left. {{c_2}} \right|}_{{x = {L_1}}}}} \hfill \\{{\hbox{flux}},\,{\hbox{x}} = {{\hbox{L}}_1}\,{{\left. {flu{x_3}} \right|}_{{x = {L_1}}}} = {{\left. {flu{x_2}} \right|}_{{x = {L_1}}}}} \hfill \\{{\hbox{value}},\,{\hbox{x}} = {{\hbox{L}}_2}\,{{\left. {{c_2}} \right|}_{{x = {L_2}}}} = {c_v}} \hfill \\\end{array} $$

The flux of drug at x = L2 was evaluated by substituting the coefficients into either Eq. 19 or 20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, R.K., Barocas, V.H. Contribution of Saccadic Motion to Intravitreal Drug Transport: Theoretical Analysis. Pharm Res 28, 1049–1064 (2011). https://doi.org/10.1007/s11095-010-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0356-7

KEY WORDS

Navigation