Skip to main content
Log in

The Preservation of Lyophilized Human Growth Hormone Activity: how Do Buffers and Sugars Interact?

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

One of the most common classes of excipients used in protein formulations are buffers. The aim of this work is to investigate the effect of buffers on protein stabilization given by sugars during freeze drying.

Methods

Molecular Dynamics simulations of human growth hormone (hGH) in the presence of sucrose and trehalose were performed, and the impact of phosphate and citrate buffers on their protective action was analyzed.

Results

We found that buffers broke the hydrogen bonding network formed by excipients, and the consequences of this disruption of structure ordering were different in sucrose-based or trehalose-based formulations. More specifically, we observed that buffers increased protein recovery in the presence of excipients, such as sucrose, that exert their action mainly by preferential exclusion. By contrast, the opposite effect was sometimes noted in the case of excipients, such as trehalose, whose protective action is related to the formation of a highly structured matrix.

Conclusions

We found that buffers have important properties, other than the control of pH, that can contribute to the overall stability of proteins. Some of these properties are related to their interaction with the other components of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATB:

Automated topology builder

COM:

Center of mass

hGH:

Human growth hormone

mAbs:

Monoclonal antibodies

PDB:

Protein data bank

PME:

Particle mesh Ewald

RMSD:

Root mean square deviation

SPC/E:

Extended simple point charge model

REFERENCES

  1. Strambini GB, Gabellieri E. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J. 1996;70(2):971–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pikal MJ. Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics. In: Rey L, May JC, editors. Freeze-drying/lyophilization of pharmaceutical and biological products. London, UK: Informa Healthcare; 2010. p. 198–232.

    Google Scholar 

  3. Anchordoquy TJ, Carpenter JF. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch Biochem Biophys. 1996;332(2):231–8.

    Article  PubMed  CAS  Google Scholar 

  4. Jaenicke R. Protein structure and function at low temperatures. Philos Trans R Soc Lond Ser B Biol Sci. 1990;326(1237):535–51.

    Article  CAS  Google Scholar 

  5. Rupley JA, Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172.

    Article  PubMed  CAS  Google Scholar 

  6. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.

    Article  PubMed  CAS  Google Scholar 

  7. Timasheff SN. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97.

    Article  PubMed  CAS  Google Scholar 

  8. Roser B. Trehalose drying : a novel replacement for freeze-drying. Biopharm. 1991;4:47–53.

    CAS  Google Scholar 

  9. Crowe JH, Crowe IM, Carpenter JF. Preserving dry biomaterials: the water replacement hypothesis. Part I Biopharm-Eugene. 1993;6(3):28–34.

    CAS  Google Scholar 

  10. Belton PS, Gil AM. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers. 1994;34(7):957–61.

    Article  PubMed  CAS  Google Scholar 

  11. Arsiccio A, Pisano R. Water entrapment and structure ordering as protection mechanisms for protein structural preservation. J Chem Phys. 2018;148(5):055102.

    Article  PubMed  CAS  Google Scholar 

  12. Arsiccio A, Pisano R. Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study. J Phys Chem B. 2017;121(37):8652–60.

    Article  PubMed  CAS  Google Scholar 

  13. van den Berg L. The effect of addition of sodium and potassium chloride to the reciprocal system: KH2PO4-Na2HPO4-H2O on pH and composition during freezing. Arch Biochem Biophys. 1959;84(2):305–15.

    Article  Google Scholar 

  14. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713–33.

  15. Weng L, Elliott GD. Distinctly different glass transition behaviors of trehalose mixed with Na2HPO4 or NaH2PO4: evidence for its molecular origin. Pharm Res. 2015;32(7):2217–28.

    Article  PubMed  CAS  Google Scholar 

  16. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255(5042):306–12.

    Article  PubMed  Google Scholar 

  17. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, et al. An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput. 2011;7(12):4026–37.

  18. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40(7):843–56.

  19. Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–71.

    Article  CAS  Google Scholar 

  20. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–93.

    Article  CAS  Google Scholar 

  21. Garcia Fernandez R, Abascal JL, Vega C. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. J Chem Phys. 2006;124(14):144506.

    Article  PubMed  CAS  Google Scholar 

  22. Kusalik PG, Svishchev IM. The spatial structure in liquid water. Science. 1994;265(5176):1219–21.

    Article  PubMed  CAS  Google Scholar 

  23. Galicia-Andres E, Dominguez H, Pizio O. Temperature dependence of the microscopic structure and density anomaly of the SPC/E and TIP4P-Ew water models. Molecular dynamics simulation results. Condens Matter Phys. 2015;18(1):13603/1–11.

    Article  Google Scholar 

  24. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity-rescaling. J Chem Phys. 2007;126(1):014101.

    Article  PubMed  CAS  Google Scholar 

  25. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–90.

    Article  CAS  Google Scholar 

  26. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014;185(2):604–13.

    Article  CAS  Google Scholar 

  27. Skarmoutsos I, Guardia E, Samios J. Hydrogen bond, electron donor-acceptor dimer, and residence dynamics in supercritical CO2-ethanol mixtures and the effect of hydrogen bonding on single reorientational and translational dynamics: a molecular dynamics simulation study. J Chem Phys. 2010;133(1):014504.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue H, Timasheff SN. Preferential and absolute interactions of solvent components with proteins in mixed solvent systems. Biopolymers. 1972;11(4):737–43.

    Article  PubMed  CAS  Google Scholar 

  29. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Peptide folding: when simulation meets experiment. Angew Chem Int Ed. 1999;38(1–2):236–40.

    Article  CAS  Google Scholar 

  30. Joosten RP, te Beek TAH, Krieger E, Hekkelman ML, Hooft RWW, Schneider R, et al. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011;39:D411–9.

  31. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577–637.

    Article  PubMed  CAS  Google Scholar 

  32. Costantino HR, Carrasquillo KG, Cordero RA, Mumenthaler M, Hsu CC, Griebenow K. Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci. 1998;87(11):1412–20.

    Article  PubMed  CAS  Google Scholar 

  33. Ohtake S, Schebor C, Palecek SP, de Pablo JJ. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures. Pharm Res. 2004;21(9):1615–21.

    Article  PubMed  CAS  Google Scholar 

  34. Franks F, Auffret T. Freeze-drying of pharmaceuticals and biopharmaceuticals: Principles and practice. Cambridge, UK: The Royal Society of Chemistry; 2008.

  35. Kets EP, IJpelaar PJ, Hoekstra FA, Vromans H. Citrate increases glass transition temperature of vitrified sucrose preparations. Cryobiology. 2004;48(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  36. Kaushik JK, Bhat R. A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions. Protein Sci. 1999;8(1):222–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gillespie R, Nguyen T, Macneil S, Jones L, Crampton S, Vunnum S. Cation exchange surface-mediated denaturation of an aglycosylated immunoglobulin (IgG1). J Chromatogr A. 2012;1251:101–10.

    Article  PubMed  CAS  Google Scholar 

  38. Chen BL, Arakawa T, Hsu E, Narhi LO, Tressel TJ, Chien SL. Strategies to suppress aggregation of recombinant keratinocyte growth-factor during liquid formulation development. J Pharm Sci. 1994;83(12):1657–61.

    Article  PubMed  CAS  Google Scholar 

  39. DeFelippis MR, Alter LA, Pekar AH, Havel HA, Brems DN. Evidence for a self-associating equilibrium intermediate during folding of human growth hormone. Biochemistry. 1993;32(6):1555–62.

    Article  PubMed  CAS  Google Scholar 

  40. Arsiccio A, Pisano R. Clarifying the role of cryo- and lyo-protectants in the biopreservation of proteins. Phys Chem Chem Phys. 2018;20(12):8267–77.

  41. DeFelippis MR, Kilcomons MA, Lents MP, Youngman KM, Havel HA. Acid stabilization of human growth hormone equilibrium folding intermediates. Biochim Biophys Acta. 1995;1247(1):35–45.

    Article  PubMed  Google Scholar 

  42. Novaes LCD, Mazzola PG, Pessoa A, Penna TCV. Citrate and phosphate influence on green fluorescent protein thermal stability. Biotechnol Prog. 2011;27(1):269–72.

    Article  CAS  Google Scholar 

  43. Mizutani K, Chen Y, Yamashita H, Hirose M, Aibara S. Thermostabilization of ovotransferrin by anions for pasteurization of liquid egg white. Biosci Biotechnol Biochem. 2006;70(8):1839–45.

    Article  PubMed  CAS  Google Scholar 

  44. Cao XM, Wang ZY, Liu YW, Wang CX, Tian Y. Effect of additive on the thermal denaturation of lysozyme analyzed by isoconversional method. Acta Chim Sin. 2010;68(2):194–8.

    CAS  Google Scholar 

  45. Joshi V, Shivach T, Kumar V, Yadav N, Rathore A. Avoiding antibody aggregation during processing: establishing hold times. Biotechnol J. 2014;9(9):1195–205.

    Article  PubMed  CAS  Google Scholar 

  46. Harnkarnsujarit N, KNakajima M, Kawai K, Watanabe M, Suzuki T. Thermal properties of freeze-concentrated sugar-phosphate solutions. Food Biophys. 2014;9:213–8.

    Article  Google Scholar 

  47. Kawai K, Suzuki T. Effect of tetrasodium tripolyphosphate on the freezeconcentrated glass-like transition temperature of sugar aqueous solutions. CryoLetters. 2006;27(2):107–14.

    PubMed  CAS  Google Scholar 

  48. Izutsu K, Kadoya S, Yomota C, Kawanishi T, Yonemachi E, Terada K. Stabilization of protein structure in freeze-dried amorphous organic acid buffer salts. Chem Pharm Bull. 2009;57(11):1231–6.

    Article  PubMed  CAS  Google Scholar 

  49. Izutsu K, Kadoya S, Yomota C, Kawanishi T, Yonemochi E, Terada K. Freeze-drying of proteins in glass solids formed by basic amino acids and dicarboxylic acids. Chem. Pharm. Bull. 2009;57(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  50. Wolkers WF, Oldendorf H, Tablin F, Crowe JH. Preservation of dried liposomes in the presence of sugar and phosphate. Biochim Biophys Acta. 2004;1661:125–34.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank the hpc@polito team, which provided the computational resources for simulations (http://www.hpc.polito.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pisano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsiccio, A., Pisano, R. The Preservation of Lyophilized Human Growth Hormone Activity: how Do Buffers and Sugars Interact?. Pharm Res 35, 131 (2018). https://doi.org/10.1007/s11095-018-2410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2410-9

KEY WORDS

Navigation