Pharmaceutical Research

, 35:84 | Cite as

Barriers to Drug Distribution into the Perinatal and Postnatal Brain

  • Jean-François Ghersi-Egea
  • Elodie Saudrais
  • Nathalie Strazielle
Expert Review Theme: The Use of Therapeutics in Pregnancy and Lactation
Part of the following topical collections:
  1. The Use of Therapeutics in Pregnancy and Lactation


Drug bioavailability to the developing brain is a major concern in the treatment of neonates and infants as well as pregnant and breast-feeding women. Central adverse drug reactions can have dramatic consequences for brain development, leading to major neurological impairment. Factors setting the cerebral bioavailability of drugs include protein-unbound drug concentration in plasma, local cerebral blood flow, permeability across blood-brain interfaces, binding to neural cells, volume of cerebral fluid compartments, and cerebrospinal fluid secretion rate. Most of these factors change during development, which will affect cerebral drug concentrations. Regarding the impact of blood-brain interfaces, the blood-brain barrier located at the cerebral endothelium and the blood-cerebrospinal fluid barrier located at the choroid plexus epithelium both display a tight phenotype early on in embryos. However, the developmental regulation of some multispecific efflux transporters that also limit the entry of numerous drugs into the brain through barrier cells is expected to favor drug penetration in the neonatal brain. Finally, drug cerebral bioavailability is likely to be affected following perinatal injuries that alter blood-brain interface properties. A thorough investigation of these mechanisms is mandatory for a better risk assessment of drug treatments in pregnant or breast-feeding women, and in neonate and pediatric patients.


blood-brain barrier cerebrospinal fluid choroid plexus development efflux transporters 



Adverse drug reaction


Blood-brain barrier


Blood-CSF barrier


Central nervous system


Cerebrospinal fluid


Acknowledgements and disclosures

This work was funded by ANR-10-IBHU-0003 CESAME grant.


  1. 1.
    Agency EM. Report on the survey of all paediatric uses of medicinal products in Europe. 2010
  2. 2.
    Smyth RM, Gargon E, Kirkham J, Cresswell L, Golder S, Smyth R, et al. Adverse drug reactions in children--a systematic review. PLoS One. 2012;7(3):e24061.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bellis JR, Kirkham JJ, Thiesen S, Conroy EJ, Bracken LE, Mannix HL, et al. Adverse drug reactions and off-label and unlicensed medicines in children: a nested case-control study of inpatients in a pediatric hospital. BMC Med. 2013;11:238.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Agency EM. Evidence of harm from off-label or unlicensed medicines in children. 2004
  5. 5.
    Elzagallaai AA, Greff M, Rieder MJ. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther. 2017;101(6):725–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Cliff-Eribo KO, Sammons H, Choonara I. Systematic review of paediatric studies of adverse drug reactions from pharmacovigilance databases. Expert Opin Drug Saf. 2016;15(10):1321–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Andropoulos DB. Effect of anesthesia on the developing brain: infant and fetus. Fetal Diagn Ther. 2018;43(1):1–11.Google Scholar
  8. 8.
    Jain KK. Drug-induced neurological disorders. Hogrefe Publishing; 2011.Google Scholar
  9. 9.
    Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76(2):260–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Agency EM. Reflection paper on extrapolation of efficacy and safety in 4 paediatric medicine development. 2016
  11. 11.
    Administration UFad. Pediatric Science and Research Activities.
  12. 12.
  13. 13.
    Ward RM, Benjamin DK, Jr., Davis JM, Gorman RL, Kauffman R, Kearns GL, et al. The need for pediatric drug development. J Pediatr 2017.Google Scholar
  14. 14.
    Rai A, Bhalla S, Rebello SS, Kastrissios H, Gulati A. Disposition of morphine in plasma and cerebrospinal fluid varies during neonatal development in pigs. J Pharm Pharmacol. 2005;57(8):981–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Hausler M, Schafer C, Osterwinter C, Jahnen-Dechent W. The physiologic development of fetuin-a serum concentrations in children. Pediatr Res. 2009;66(6):660–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Sammons HM, Choonara I. Learning lessons from adverse drug reactions in children. Children (Basel). 2016;3(1):1.Google Scholar
  18. 18.
    Thyagarajan B, Deshpande SS. Cotrimoxazole and neonatal kernicterus: a review. Drug Chem Toxicol. 2014;37(2):121–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10(5):1473–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fenstermacher JD. The pharmacology of the blood-brain barrier. In: Neuwelt E, editor. Implications of the blood-brain barrier and its manipulation. New York: Plenum; 1989. p. 137–55.CrossRefGoogle Scholar
  22. 22.
    Westerhout J, Danhof M, De Lange EC. Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci. 2011;100(9):3577–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Nehlig A, Pereira de Vasconcelos A, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9(5):579–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Wei L, Otsuka T, Acuff V, Bereczki D, Pettigrew K, Patlak C, et al. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab. 1993;13(3):487–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000;59(7):561–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Caley DW, Maxwell DS. Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol. 1970;138(1):31–47.CrossRefPubMedGoogle Scholar
  27. 27.
    Dziegielewska KM, Ek J, Habgood MD, Saunders NR. Development of the choroid plexus. Microsc Res Tech. 2001;52(1):5–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Szmydynger-Chodobska J, Chodobski A, Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Phys. 1994;266(5 Pt 2):R1488–92.Google Scholar
  29. 29.
    Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience. 1993;55(2):339–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang S, Wang Y, Li K, Tang X, Zhang K, Shi C, et al. Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging. Int J Dev Neurosci. 2016;53:1–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996;75(4):1271–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Knopf PM, Cserr HF, Nolan SC, Wu TY, Harling-Berg CJ. Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol Appl Neurobiol. 1995;21(3):175–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Ghersi-Egea JF, Babikian A, Blondel S, Strazielle N. Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids Barriers CNS. 2015;12:8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bass NH, Lundborg P. Postnatal development of bulk flow in the cerebrospinal fluid system of the albino rat: clearance of carboxyl-( 14 C)inulin after intrathecal infusion. Brain Res. 1973;52:323–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Jones HC, Deane R, Bucknall RM. Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Dev Brain Res. 1987;33(1):23–30.CrossRefGoogle Scholar
  38. 38.
    Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dziegielewska KM, Evans CA, Malinowska DH, Mollgard K, Reynolds JM, Reynolds ML, et al. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol. 1979;292:207–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol. 2000;20(1):29–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Dickens D, Webb SD, Antonyuk S, Giannoudis A, Owen A, Radisch S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol. 2013;85(11):1672–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee NY, Choi HO, Kang YS. The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res. 2012;37(7):1499–507.CrossRefPubMedGoogle Scholar
  43. 43.
    Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev. 2013;33(3):457–516.CrossRefPubMedGoogle Scholar
  44. 44.
    Goasdoue K, Miller SM, Colditz PB, Bjorkman ST. Review: the blood-brain barrier; protecting the developing fetal brain. Placenta. 2017;54:111–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Strazielle N, Khuth ST, Ghersi-Egea JF. Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations. Adv Drug Deliv Rev. 2004;56(12):1717–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem. 2002;81(1):203–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Mollgard K, Dziegielewska KM, Holst CB, Habgood MD, Saunders NR. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci Rep. 2017;7(1):11603.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138(6):861–79.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, et al. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8(7):e65629.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol. 2006;496(1):13–26.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.CrossRefPubMedGoogle Scholar
  52. 52.
    Conrad MS, Johnson RW. The domestic piglet: an important model for investigating the neurodevelopmental consequences of early life insults. Annu Rev Anim Biosci. 2015;3:245–64.CrossRefPubMedGoogle Scholar
  53. 53.
    Stonestreet BS, Burgess GH, Cserr HF. Blood-brain barrier integrity and brain water and electrolytes during hypoxia/hypercapnia and hypotension in newborn piglets. Brain Res. 1992;590(1–2):263–70.CrossRefPubMedGoogle Scholar
  54. 54.
    Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res. 1999;113(1–2):47–54.CrossRefPubMedGoogle Scholar
  55. 55.
    Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci. 2015;9:21.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, et al. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol. 2008;510(5):497–507.CrossRefPubMedGoogle Scholar
  57. 57.
    Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Phys Rep. 2016;4(16):e12853.CrossRefGoogle Scholar
  58. 58.
    Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD, Wakefield MJ, Lindsay H, et al. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci. 2015;9:123.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41.CrossRefPubMedGoogle Scholar
  60. 60.
    Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS. 2013;10(1):25.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Virgintino D, Robertson D, Benagiano V, Errede M, Bertossi M, Ambrosi G, et al. Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Brain Res Dev Brain Res. 2000;123(1):95–101.CrossRefPubMedGoogle Scholar
  62. 62.
    Strazielle N, Ghersi-Egea JF. Potential pathways for CNS drug delivery across the blood-cerebrospinal fluid barrier. Curr Pharm Des. 2016;22(35):5463–76.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stolp HB, Dziegielewska KM, Ek CJ, Habgood MD, Lane MA, Potter AM, et al. Breakdown of the blood-brain barrier to proteins in white matter of the developing brain following systemic inflammation. Cell Tissue Res. 2005;320(3):369–78.CrossRefPubMedGoogle Scholar
  65. 65.
    Hutton LC, Castillo-Melendez M, Walker DW. Uteroplacental inflammation results in blood brain barrier breakdown, increased activated caspase 3 and lipid peroxidation in the late gestation ovine fetal cerebellum. Dev Neurosci. 2007;29(4–5):341–54.CrossRefPubMedGoogle Scholar
  66. 66.
    Kratzer I, Chip S, Vexler ZS. Barrier mechanisms in neonatal stroke. Front Neurosci. 2014;8:359.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Muramatsu K, Fukuda A, Togari H, Wada Y, Nishino H. Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke. 1997;28(11):2281–8. discussion 8-9CrossRefPubMedGoogle Scholar
  68. 68.
    Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci. 2012;32(28):9588–600.CrossRefPubMedGoogle Scholar
  69. 69.
    Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, et al. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One. 2011;6(1):e16165.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Neuhaus W, Schlundt M, Fehrholz M, Ehrke A, Kunzmann S, Liebner S, et al. Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups. PLoS One. 2015;10(8):e0136221.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Iqbal M, Baello S, Javam M, Audette MC, Gibb W, Matthews SG. Regulation of multidrug resistance P-glycoprotein in the developing blood-brain barrier: interplay between glucocorticoids and cytokines. J Neuroendocrinol. 2016;28(3):12360.CrossRefPubMedGoogle Scholar
  72. 72.
    Ghersi-Egea JF, Gazzin S, Strazielle N. Blood-brain interfaces and bilirubin-induced neurological diseases. Curr Pharm Des. 2009;15(25):2893–907.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CRNS UMR 5292Université Claude Bernard Lyon-1LyonFrance
  2. 2.Blood-Brain Interfaces Exploratory Platform BIPLyon Neurosciences Research CenterLyonFrance
  3. 3.Brain-ILyonFrance

Personalised recommendations