Skip to main content

Advertisement

Log in

Barriers to Drug Distribution into the Perinatal and Postnatal Brain

  • Expert Review
  • Theme: The Use of Therapeutics in Pregnancy and Lactation
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Drug bioavailability to the developing brain is a major concern in the treatment of neonates and infants as well as pregnant and breast-feeding women. Central adverse drug reactions can have dramatic consequences for brain development, leading to major neurological impairment. Factors setting the cerebral bioavailability of drugs include protein-unbound drug concentration in plasma, local cerebral blood flow, permeability across blood-brain interfaces, binding to neural cells, volume of cerebral fluid compartments, and cerebrospinal fluid secretion rate. Most of these factors change during development, which will affect cerebral drug concentrations. Regarding the impact of blood-brain interfaces, the blood-brain barrier located at the cerebral endothelium and the blood-cerebrospinal fluid barrier located at the choroid plexus epithelium both display a tight phenotype early on in embryos. However, the developmental regulation of some multispecific efflux transporters that also limit the entry of numerous drugs into the brain through barrier cells is expected to favor drug penetration in the neonatal brain. Finally, drug cerebral bioavailability is likely to be affected following perinatal injuries that alter blood-brain interface properties. A thorough investigation of these mechanisms is mandatory for a better risk assessment of drug treatments in pregnant or breast-feeding women, and in neonate and pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADR:

Adverse drug reaction

BBB:

Blood-brain barrier

BCSFB:

Blood-CSF barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

References

  1. Agency EM. Report on the survey of all paediatric uses of medicinal products in Europe. 2010 http://www.ema.europa.eu/docs/en_GB/document_library/Report/2011/01/WC500101006.pdf.

  2. Smyth RM, Gargon E, Kirkham J, Cresswell L, Golder S, Smyth R, et al. Adverse drug reactions in children--a systematic review. PLoS One. 2012;7(3):e24061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellis JR, Kirkham JJ, Thiesen S, Conroy EJ, Bracken LE, Mannix HL, et al. Adverse drug reactions and off-label and unlicensed medicines in children: a nested case-control study of inpatients in a pediatric hospital. BMC Med. 2013;11:238.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agency EM. Evidence of harm from off-label or unlicensed medicines in children. 2004 http://www.ema.europa.eu/docs/en_GB/document_library/Other/2009/10/WC500004021.pdf.

  5. Elzagallaai AA, Greff M, Rieder MJ. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther. 2017;101(6):725–35.

    Article  CAS  PubMed  Google Scholar 

  6. Cliff-Eribo KO, Sammons H, Choonara I. Systematic review of paediatric studies of adverse drug reactions from pharmacovigilance databases. Expert Opin Drug Saf. 2016;15(10):1321–8.

    Article  CAS  PubMed  Google Scholar 

  7. Andropoulos DB. Effect of anesthesia on the developing brain: infant and fetus. Fetal Diagn Ther. 2018;43(1):1–11.

  8. Jain KK. Drug-induced neurological disorders. Hogrefe Publishing; 2011.

  9. Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  10. Agency EM. Reflection paper on extrapolation of efficacy and safety in 4 paediatric medicine development. 2016 http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2016/04/WC500204187.pdf.

  11. Administration UFad. Pediatric Science and Research Activities. https://www.fda.gov/ScienceResearch/SpecialTopics/PediatricTherapeuticsResearch/ucm106614.htm.

  12. Agency EM. Needs for paediatric medicines. http://www.ema.europa.eu/ema/indexjsp?curl=pages/regulation/document_listing/document_listing_000096jsp&mid=WC0b01ac0580925b1e.

  13. Ward RM, Benjamin DK, Jr., Davis JM, Gorman RL, Kauffman R, Kearns GL, et al. The need for pediatric drug development. J Pediatr 2017.

  14. Rai A, Bhalla S, Rebello SS, Kastrissios H, Gulati A. Disposition of morphine in plasma and cerebrospinal fluid varies during neonatal development in pigs. J Pharm Pharmacol. 2005;57(8):981–6.

    Article  CAS  PubMed  Google Scholar 

  15. Hausler M, Schafer C, Osterwinter C, Jahnen-Dechent W. The physiologic development of fetuin-a serum concentrations in children. Pediatr Res. 2009;66(6):660–4.

    Article  PubMed  Google Scholar 

  16. Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–93.

    Article  CAS  PubMed  Google Scholar 

  17. Sammons HM, Choonara I. Learning lessons from adverse drug reactions in children. Children (Basel). 2016;3(1):1.

    Google Scholar 

  18. Thyagarajan B, Deshpande SS. Cotrimoxazole and neonatal kernicterus: a review. Drug Chem Toxicol. 2014;37(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  19. Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10(5):1473–91.

    Article  CAS  PubMed  Google Scholar 

  20. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fenstermacher JD. The pharmacology of the blood-brain barrier. In: Neuwelt E, editor. Implications of the blood-brain barrier and its manipulation. New York: Plenum; 1989. p. 137–55.

    Chapter  Google Scholar 

  22. Westerhout J, Danhof M, De Lange EC. Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci. 2011;100(9):3577–93.

    Article  CAS  PubMed  Google Scholar 

  23. Nehlig A, Pereira de Vasconcelos A, Boyet S. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. J Cereb Blood Flow Metab. 1989;9(5):579–88.

    Article  CAS  PubMed  Google Scholar 

  24. Wei L, Otsuka T, Acuff V, Bereczki D, Pettigrew K, Patlak C, et al. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab. 1993;13(3):487–97.

    Article  CAS  PubMed  Google Scholar 

  25. Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000;59(7):561–74.

    Article  CAS  PubMed  Google Scholar 

  26. Caley DW, Maxwell DS. Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol. 1970;138(1):31–47.

    Article  CAS  PubMed  Google Scholar 

  27. Dziegielewska KM, Ek J, Habgood MD, Saunders NR. Development of the choroid plexus. Microsc Res Tech. 2001;52(1):5–20.

    Article  CAS  PubMed  Google Scholar 

  28. Szmydynger-Chodobska J, Chodobski A, Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Phys. 1994;266(5 Pt 2):R1488–92.

    CAS  Google Scholar 

  29. Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.

    Article  CAS  PubMed  Google Scholar 

  30. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience. 1993;55(2):339–51.

    Article  CAS  PubMed  Google Scholar 

  32. Yang S, Wang Y, Li K, Tang X, Zhang K, Shi C, et al. Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging. Int J Dev Neurosci. 2016;53:1–7.

    Article  PubMed  Google Scholar 

  33. Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996;75(4):1271–88.

    Article  CAS  PubMed  Google Scholar 

  34. Knopf PM, Cserr HF, Nolan SC, Wu TY, Harling-Berg CJ. Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol Appl Neurobiol. 1995;21(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  35. Ghersi-Egea JF, Babikian A, Blondel S, Strazielle N. Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids Barriers CNS. 2015;12:8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bass NH, Lundborg P. Postnatal development of bulk flow in the cerebrospinal fluid system of the albino rat: clearance of carboxyl-( 14 C)inulin after intrathecal infusion. Brain Res. 1973;52:323–32.

    Article  CAS  PubMed  Google Scholar 

  37. Jones HC, Deane R, Bucknall RM. Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Dev Brain Res. 1987;33(1):23–30.

    Article  Google Scholar 

  38. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dziegielewska KM, Evans CA, Malinowska DH, Mollgard K, Reynolds JM, Reynolds ML, et al. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol. 1979;292:207–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol. 2000;20(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  41. Dickens D, Webb SD, Antonyuk S, Giannoudis A, Owen A, Radisch S, et al. Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol. 2013;85(11):1672–83.

    Article  CAS  PubMed  Google Scholar 

  42. Lee NY, Choi HO, Kang YS. The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res. 2012;37(7):1499–507.

    Article  CAS  PubMed  Google Scholar 

  43. Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev. 2013;33(3):457–516.

    Article  CAS  PubMed  Google Scholar 

  44. Goasdoue K, Miller SM, Colditz PB, Bjorkman ST. Review: the blood-brain barrier; protecting the developing fetal brain. Placenta. 2017;54:111–6.

    Article  CAS  PubMed  Google Scholar 

  45. Strazielle N, Khuth ST, Ghersi-Egea JF. Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations. Adv Drug Deliv Rev. 2004;56(12):1717–40.

    Article  CAS  PubMed  Google Scholar 

  46. Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem. 2002;81(1):203–6.

    Article  CAS  PubMed  Google Scholar 

  47. Mollgard K, Dziegielewska KM, Holst CB, Habgood MD, Saunders NR. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci Rep. 2017;7(1):11603.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol. 2012;138(6):861–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, et al. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8(7):e65629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol. 2006;496(1):13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  52. Conrad MS, Johnson RW. The domestic piglet: an important model for investigating the neurodevelopmental consequences of early life insults. Annu Rev Anim Biosci. 2015;3:245–64.

    Article  CAS  PubMed  Google Scholar 

  53. Stonestreet BS, Burgess GH, Cserr HF. Blood-brain barrier integrity and brain water and electrolytes during hypoxia/hypercapnia and hypotension in newborn piglets. Brain Res. 1992;590(1–2):263–70.

    Article  CAS  PubMed  Google Scholar 

  54. Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res. 1999;113(1–2):47–54.

    Article  CAS  PubMed  Google Scholar 

  55. Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci. 2015;9:21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, et al. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol. 2008;510(5):497–507.

    Article  CAS  PubMed  Google Scholar 

  57. Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Phys Rep. 2016;4(16):e12853.

    Article  Google Scholar 

  58. Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD, Wakefield MJ, Lindsay H, et al. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci. 2015;9:123.

    PubMed  PubMed Central  Google Scholar 

  59. Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41.

    Article  CAS  PubMed  Google Scholar 

  60. Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS. 2013;10(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Virgintino D, Robertson D, Benagiano V, Errede M, Bertossi M, Ambrosi G, et al. Immunogold cytochemistry of the blood-brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Brain Res Dev Brain Res. 2000;123(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  62. Strazielle N, Ghersi-Egea JF. Potential pathways for CNS drug delivery across the blood-cerebrospinal fluid barrier. Curr Pharm Des. 2016;22(35):5463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stolp HB, Dziegielewska KM, Ek CJ, Habgood MD, Lane MA, Potter AM, et al. Breakdown of the blood-brain barrier to proteins in white matter of the developing brain following systemic inflammation. Cell Tissue Res. 2005;320(3):369–78.

    Article  CAS  PubMed  Google Scholar 

  65. Hutton LC, Castillo-Melendez M, Walker DW. Uteroplacental inflammation results in blood brain barrier breakdown, increased activated caspase 3 and lipid peroxidation in the late gestation ovine fetal cerebellum. Dev Neurosci. 2007;29(4–5):341–54.

    Article  CAS  PubMed  Google Scholar 

  66. Kratzer I, Chip S, Vexler ZS. Barrier mechanisms in neonatal stroke. Front Neurosci. 2014;8:359.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Muramatsu K, Fukuda A, Togari H, Wada Y, Nishino H. Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke. 1997;28(11):2281–8. discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  68. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci. 2012;32(28):9588–600.

    Article  CAS  PubMed  Google Scholar 

  69. Gazzin S, Berengeno AL, Strazielle N, Fazzari F, Raseni A, Ostrow JD, et al. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One. 2011;6(1):e16165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Neuhaus W, Schlundt M, Fehrholz M, Ehrke A, Kunzmann S, Liebner S, et al. Multiple antenatal dexamethasone treatment alters brain vessel differentiation in newborn mouse pups. PLoS One. 2015;10(8):e0136221.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Iqbal M, Baello S, Javam M, Audette MC, Gibb W, Matthews SG. Regulation of multidrug resistance P-glycoprotein in the developing blood-brain barrier: interplay between glucocorticoids and cytokines. J Neuroendocrinol. 2016;28(3):12360.

    Article  CAS  PubMed  Google Scholar 

  72. Ghersi-Egea JF, Gazzin S, Strazielle N. Blood-brain interfaces and bilirubin-induced neurological diseases. Curr Pharm Des. 2009;15(25):2893–907.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and disclosures

This work was funded by ANR-10-IBHU-0003 CESAME grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ghersi-Egea.

Additional information

Guest Editor: Sara Eyal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghersi-Egea, JF., Saudrais, E. & Strazielle, N. Barriers to Drug Distribution into the Perinatal and Postnatal Brain. Pharm Res 35, 84 (2018). https://doi.org/10.1007/s11095-018-2375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2375-8

KEY WORDS

Navigation