Skip to main content

Abstract

All so-called permeability studies of the blood-brain barrier (BBB) actually measure one of several transfer constants (e.g., the extraction fraction) and not a true permeability coefficient. The permeability coefficient or, more simply, the permeability is classically defined as the flux (i.e., the rate of unidirectional solute flow) per unit membrane area divided by the driving forces for the flux, which are the concentration, pressure, and electrical gradients, in most cases. Experimental measurements of permeability involve an assessment of the flux across the membrane of predetermined surface area that separates two solutions of nearly identical composition. For the BBB, which is generally believed to be formed by the capillary endothelium, the classic definition of the permeability coefficient should be retained because it can be used to understand BBB function more clearly. By contrast, the standard methods of measuring the permeability coefficient cannot be employed for the cerebral capillaries, since neither the capillary surface area nor the composition of the blood within the capillaries and the interstitial fluid surrounding them can be tightly controlled or precisely known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amtorp O: Estimation of capillary permeability of inulin, sucrose and mannitol in rat brain cortex. Acta Physiol Scand 110:337–342, 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Baggot JD, Davis LE, Neff CA: Extent of plasma-protein binding of amphetamine in different species. Biochem Pharmacol 21:1813–1816, 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Banos G, Daniel PM, Moorhouse SK, et al: The influx of amino acids into the brain of the rat in vivo: The essential compared with some non-essential amino acids. Proc R Soc (Lond) B 183:59–70, 1973.

    Article  CAS  Google Scholar 

  4. Bertler A, Falck B, Rosengren E: The direct demonstration of a barrier mechanism in brain capillaries. Acta Pharmacol Toxicol 20:317–321, 1963.

    Article  CAS  Google Scholar 

  5. Bertler A, Falck B, Owman C, et al: The localization of mono-aminergic blood-brain barrier mechanisms. Pharmacol Rev 18:369–385, 1966.

    PubMed  CAS  Google Scholar 

  6. Betz LA, Firth J A, Goldstein GW: Polarity of the blood-brain barrier: Distribution of enzymes between luminal and antiluminal membranes. Brain Res 192:17–28, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Blasberg R, Patlak C, Fenstermacher J: Intrathecal chemotherapy: Brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 195:73–83, 1975.

    PubMed  CAS  Google Scholar 

  8. Blasberg R, Fenstermacher J, Patlak C: Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Bradbury MWB, Kleeman CR: Stability of the potassium content of cerebrospinal fluid and brain. Am J Physiol 213:519–528, 1967.

    PubMed  CAS  Google Scholar 

  10. Bradbury MWB, Patlak CS, Oldendorf WH: Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am J Physiol 229:1110–1115, 1975.

    PubMed  CAS  Google Scholar 

  11. Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677, 1969.

    Article  PubMed  CAS  Google Scholar 

  12. Bundgaard M: Ultrastructure of frog cerebral and pial microvessels and their impermeability to lanthanum ions. Brain Res 241:57–65, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Collins JM, Dedrick RL: Distributed model for drug delivery to CSF and brain tissue. Am J Physiol 245:R303–310, 1983.

    Google Scholar 

  14. Cornford EM, Braun LD, Oldendorf WH, et al: Comparison of lipid-mediated blood-brain-barrier penetrability in neonates and adults. Am J Physiol 243:C161–C168, 1982.

    PubMed  CAS  Google Scholar 

  15. Cornford EM, Pardridge WM, Braun LD, et al: Increased blood-brain barrier transport of protein-bound anticonvulsant drugs in the newborn. J Cereb Blood Flow Metab 3:280–286, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Cornford EM, Diep CP, Pardridge WM: Blood–brain barrier transport of valproic acid. J Neurochem 44:1541–1550, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Craigie EH: On the relative vascularity of various parts of the central nervous system of the albino rat. J Comp Neurol 31:429–464, 1920.

    Article  Google Scholar 

  18. Crone C: Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58:292–305, 1963.

    Article  PubMed  CAS  Google Scholar 

  19. Crone C: The permeability of brain capillaries to non-electrolytes. Acta Physiol Scand 64:407–417, 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Crone C, Levitt DG: Capillary permeability to small solutes. In Renkin EM, Michel CC (eds): Handbook of Physiology. Section 2: The Cardiovascular System, Vol. IV: Microcirculation. American Physiology Society, Bethesda, 1984, pp. 411–466.

    Google Scholar 

  21. Daniel PM, Lam DKC, Pratt OE: Comparison of the vascular permeability of the brain and the spinal cord to mannitol and inulin. J Neurochem 45:647–649, 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Dorvini-Zis K, Sato M, Goping G, et al: Ionic lanthanum passage across cerebral endothelium exposed to hyperosmotic arabinose. Acta Neuropathol (Berl) 60:49–60, 1983.

    Article  Google Scholar 

  23. Evans GH, Nies AH, Shand DG: The disposition of propranolol. III. Decreased half-life and volume of distribution as a result of plasma binding in man, monkey, dog, and rat. J Pharmacol Exp Ther 186:114–122, 1973.

    PubMed  CAS  Google Scholar 

  24. Fenstermacher JD: Drug transfer across the blood-brain barrier. In Breimer DD, Speiser P (eds): Topics in Pharmaceutical Sciences. Elsevier, Amsterdam, 1983, pp. 143–154.

    Google Scholar 

  25. Fenstermacher JD, Patlak CS: CNS, CSF, and extradural fluid uptake of various hydrophilic materials in the dogfish. Am J Physiol 232.R45–53, 1977.

    PubMed  CAS  Google Scholar 

  26. Fenstermacher JD, Rapoport SI: Blood–brain barrier. In Renkin EM, Michel CC (eds): Handbook of Physiology.Section 2: The Cardiovascular System. Vol. IV: Microcirculation. American Physiological Society, Bethesda, 1984, pp. 969–1000.

    Google Scholar 

  27. Fenstermacher JD, Blasberg RG, Patlak CS: Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol Ther 14:217–248, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Fenstermacher JD, Sposito NM, Nornes SE, et al: Relationship of capillary density to glucose utilization and blood flow in white and gray matter of the rat brain. Microvasc Res 29:219–220, 1985.

    Google Scholar 

  29. Fishman RA: Blood–brain and CSF barriers to penicillin and related organic acids. Arch Neurol Chi 15:113– 124, 1966.

    CAS  Google Scholar 

  30. Gjedde A: High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 36:1463–1474, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Gjedde A, Diemer NH: Double tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab 5:282–289, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Gjedde A, Hansen AJ, Siemkowicz E: Rapid simultaneous determination of regional blood flow and bloodbrain glucose transfer in brain of rat. Acta Physiol Scand 108:321–330, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Go KG, Pratt JJ: The dependence of blood to brain passage of radioactive sodium on blood pressure and temperature. Brain Res 93:329–336, 1975.

    Article  PubMed  CAS  Google Scholar 

  34. Greenblatt DJ, Ochs HR, Lloyd BL: Entry of diazepam and its major metabolite into cerebrospinal fluid. Psychopharmacology 70:89–93, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Hardebo JE, Owman C: Characterization of the in vivo uptake of monoamines in brain microvessels. Acta Physiol Scand 108:223–229, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Hardebo JE, Falck B, Owman C, et al: Studies on the enzymic blood-brain barrier: Quantitative measurements of DOPA decarboxylase in the wall of microvessels as related to the parenchyma in various CNS regions. Acta Physiol Scand 105:453–460, 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Hardebo JE, Emson PC, Falck B, et al: Enzymes related to monoamine metabolism in brain microvessels. J Neurochem 35:1388–1393, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Hawkins RA, Mans AM, Biebuyck JF: Amino acid supply to individual cerebral structures in awake and anesthetized rats. Am J Physiol 242:E1–E11, 1982.

    PubMed  CAS  Google Scholar 

  39. Hertz MM, Paulson OB: Transfer across the human blood-brain barrier: Evidence for capillary recruitment and for a paradoxical glucose permeability in increase in hypocapnia. Microvasc Res 24:364–376, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Hironaka T, Fuchino K, Fuji T: Absorption of diazepam and its transfer through the blood-brain barrier after intraperitoneal administration in the rat. J Pharmacol Exp Ther 229:809–815, 1984.

    PubMed  CAS  Google Scholar 

  41. Johanson CE, Woodbury DM: Uptake of [14C]urea by the in vivo choroid plexus-cerebrospinal fluid-brain system: Identification of sites of molecular sieving. J Physiol (Lond) 275:167–176, 1978.

    CAS  Google Scholar 

  42. Lear JL, Ackermann RF, Kameyama M, et al: Evaluation of [123I]isopropyliodoamphetamine as a tracer for local cerebral blood flow using direct autoradiographic comparison. J Cereb Blood Flow Metab 2:179–185, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Leo A, Hansch C, Elkins D: Partition coefficients and their uses. Chem Rev 71:525–616, 1971.

    Article  CAS  Google Scholar 

  44. Levin VA: Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Levin VA, Patlak CS: A compartmental analysis of 24Na kinetics in rat cerebrum, sciatic nerve, and cerebrospinal fluid. J Physiol (Lond) 224:559–581, 1972.

    CAS  Google Scholar 

  46. Levin VA, Fenstermacher JD, Patlak CS: Sucrose and inulin space measurements of the cerebral cortex in four mammalian species. Am J Physiol 291:1528–1553, 1970.

    Google Scholar 

  47. Loo TL, Dion RL, Dixon RL, et al: The antitumor agent, l,3-Bis-(2-chlorethyl)-l-nitrosourea. J Pharm Sci 55:492–497, 1966.

    Article  CAS  Google Scholar 

  48. Loo TL, Benjamin RS, Lu K, et al: Metabolism and disposition of Baker’s antifolate (NSC-129104), ftorafur (NSC-148958), an dichlorallyl lawsone (NSC-126771) in man. Drug Metab Rev 8:137–150, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Macey RI: Transport of water and urea in red blood cells. Am J Physiol 246:C195–C203, 1984.

    PubMed  CAS  Google Scholar 

  50. Mayer S, Maickel RP, Brodie BB: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J Pharmacol Exp Ther 127:205–211, 1959.

    CAS  Google Scholar 

  51. Ohno K, Pettigrew KD, Rapoport SI: Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–H307, 1978.

    PubMed  CAS  Google Scholar 

  52. Ohrbach E, Finkelstein A: The nonelectrolyte permeability of planar lipid bilayer membranes. J Gen Physiol 75:427–436, 1980.

    Article  Google Scholar 

  53. Oldendorf WH: Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639, 1971.

    PubMed  CAS  Google Scholar 

  54. Oldendorf WH: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol 224:1450–1453, 1973.

    PubMed  CAS  Google Scholar 

  55. Oldendorf WH: Lipid solubility and drug penetration of the blood-brain barrier. Proc Soc Exp Biol Med 147:813–816, 1974.

    PubMed  CAS  Google Scholar 

  56. Oldendorf WH, Cornford ME, Braun WJ: The large apparent work capability of the blood-brain barrier. A study of the mitochondrial content of capillary endothelial cells in brain and other tissue of the rat. Ann Neurol 1:409–417, 1977.

    Article  PubMed  CAS  Google Scholar 

  57. Oliverio VT, Vietzke WM, Williams MK, et al: The absorption, distribution, excretion, and biotransformation of the carcinostatic l-(2-chlorethyl)-3-cyclohexyl-l-nitrosourea in animals. Cancer Res 30:1330–1337, 1970.

    PubMed  CAS  Google Scholar 

  58. Pardridge WM: Tryptophan transport through the blood-brain barrier: In vivo measurement of free and albumin-bound amino acid. Life Sci 25:1519–1528, 1979.

    Article  PubMed  CAS  Google Scholar 

  59. Pardridge WM: Transport of protein-bound hormones into tissues in vivo. Endocrine Rev 2:103–123,1981.

    Article  CAS  Google Scholar 

  60. Pardridge WM: Neuropeptides and the blood-brain barrier. Annu Rev Physiol 45:73–82, 1983.

    Article  PubMed  CAS  Google Scholar 

  61. Pardridge WM: Brain metabolism: A perspective from the blood-brain barrier. Physiol Rev 63:1481–1535, 1983.

    PubMed  CAS  Google Scholar 

  62. Pardridge WM, Connor JD: Saturable transport of amphetamine across the blood-brain barrier. Experientia 29:302–304, 1973.

    Article  PubMed  CAS  Google Scholar 

  63. Pardridge WM, Fierer G: Blood–brain barrier transport of butanol and water relative to AMsopropyl-piodoamphetamine as the internal reference. J Cereb Blood Flow Metab 5:275–281, 1985.

    Article  PubMed  CAS  Google Scholar 

  64. Pardridge WM, Mietus LJ: Enkephalin and blood-brain barrier: Studies of binding and degradation in isolated brain microvessels. Endocrinology 109:1138–1143, 1981.

    Article  PubMed  CAS  Google Scholar 

  65. Pardridge WM, Sakiyama R, Fierer G: Blood–brain barrier transport and brain sequestration of propranolol and lidocaine. Am J Physiol 247:R582–R588, 1984.

    PubMed  CAS  Google Scholar 

  66. Patlak CS, Fenstermacher JD: Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol 229:877–884, 1975.

    PubMed  CAS  Google Scholar 

  67. Phelps ME, Huang SC, Hoffman EJ, et al: Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability-surface area product. Stroke 12:607–619, 1981.

    Article  PubMed  CAS  Google Scholar 

  68. Price MT, Pusateri ME, Crow SE, et al: Uptake of exogenous aspartate into circumventricular organs but not other regions of adult mouse brain. J Neurochem 42:740–744, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Pollay M: Cerebrospinal fluid transport and the thiocyanate space of the brain. Am J Physiol 210:275–279, 1966.

    PubMed  CAS  Google Scholar 

  70. Raichle ME, Eichling JO, Straatman MG, et al: Blood–brain barrier permeability of 14C-labeled alcohols and 150-labeled water. Am J Physiol 230:543–552, 1976.

    PubMed  CAS  Google Scholar 

  71. Rail DP, Oppelt WW, Patlak CS: Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci 1:43–48, 1962.

    Article  Google Scholar 

  72. Ramsay RE, Hammond EJ, Perchalski RJ, et al: Brain uptake of phenytoin, phenobarbital, and diazepam. Arch Neurol 36:535–539, 1979.

    PubMed  CAS  Google Scholar 

  73. Rapoport SI: Blood–Brain Barrier in Physiology and Medicine. Raven, New York, 1976.

    Google Scholar 

  74. Rapoport SI, Ohno K, Pettigrew KD: Drug entry into brain. Brain Res 172:354–359, 1979.

    Article  PubMed  CAS  Google Scholar 

  75. Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217, 1967.

    Article  PubMed  CAS  Google Scholar 

  76. Renkawek K, Murray MR, Spatz M, et al: Distinctive histochemical characteristics of brain capillaries in organotype culture. Exp Neurol 50:194–206, 1976.

    Article  PubMed  CAS  Google Scholar 

  77. Sakurada O, Kennedy C, Jehle J, et al: Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am J Physiol 234:H59–H66, 1978.

    PubMed  CAS  Google Scholar 

  78. Simpson LL, Barkai A: Kinetic studies on the entry of J-amphetamine into the central nervous system: I. Cerebrospinal fluid. J Pharmacol Exp Ther 212:541–545, 1980.

    PubMed  CAS  Google Scholar 

  79. Smith QR, Rapoport SI: Carrier-mediated transport of chloride across the blood-brain barrier. J Neurochem 42:754–763, 1984.

    Article  PubMed  CAS  Google Scholar 

  80. Spector R, Eells J: Deoxynucleoside and vitamin transport into the central nervous system. Fed Proc 43:196–200, 1984.

    PubMed  CAS  Google Scholar 

  81. Takasato Y, Rapoport SI, Smith QR: An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493, 1984.

    PubMed  CAS  Google Scholar 

  82. Van Deurs B: Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int Rev Cytol 65:117–191, 1980.

    Article  PubMed  Google Scholar 

  83. Wade LA, Katzman R: Rat brain regional uptake and decarboxylation of L-DOPA following carotid injection. Am J Physiol 228:352–359, 1975.

    PubMed  CAS  Google Scholar 

  84. Wade LA, Katzman R: Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25:837–842, 1975.

    Article  PubMed  CAS  Google Scholar 

  85. Weindl A: The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In Ganten D, Pfaff D (eds): Central Cardiovascular Control. Springer-Verlag, Berlin, 1983, pp. 152–186.

    Google Scholar 

  86. Weindl A, Joynt RJ: The median eminence as a circumventricular organ. In Knigge KM, Scott DE, Weindl A (eds): Brain-Endocrine Interaction: Median Eminence, Structure and Function. Karger, Basel, 1972, pp. 16–22.

    Google Scholar 

  87. Weiss HR, Buchweitz E, Murtha TJ, et al: Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ Res 51:494–503, 1982.

    PubMed  CAS  Google Scholar 

  88. Wilson CWM, Brodie BB: The absence of blood-brain barrier from certain areas of the central nervous system. J Pharmacol Exp Ther 133:332–334, 1961.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Publishing Corporation

About this chapter

Cite this chapter

Fenstermacher, J.D. (1989). Pharmacology of the Blood-Brain Barrier. In: Neuwelt, E.A. (eds) Implications of the Blood-Brain Barrier and Its Manipulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0701-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0701-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8039-2

  • Online ISBN: 978-1-4613-0701-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics