Skip to main content

Advertisement

Log in

The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2018

This article has been updated

Abstract

Ten years after Fire and Melo’s Nobel Prize for discovery of gene silencing by double-stranded RNA, a remarkable progress was achieved in RNA interference (RNAi). Changes in the chemical structure of synthetic oligonucleotides make them more stable and specific, and new delivery strategies became progressively available. The attention of pharmaceutical industry rapidly turned to RNAi, as an opportunity to explore new drug targets. This review addresses nine small-interfering RNAs (siRNAs) and one unique microRNA (miRNA) inhibitor, which entered the phase 2–3 clinical trials. The siRNAs in focus are PF-04523655, TKM-080301, Atu027, SYL040012, SYL1001, siG12D-LODER (phase 2), QPI-1002, QPI-1007, and patisiran (phase 3). Regarding miRNAs, their content can be down- or up-regulated, by using miRNA inhibitors (AntimiRs) or miRNA mimics. Miravirsen is an AntimiR-122 for hepatitis C virus infection. The flexibility of RNAi technology is easily understood taking into account: (i) the different drug targets (i.e. p53, caspase 2, PKN3, β2-adrenergic receptor, mutated KRAS, microRNAs); (ii) therapeutic conditions, including ophthalmic diseases, kidney injury, amyloidosis, pancreatic cancer, viral hepatitis; and (iii) routes of administration (ocular, intravenous, subcutaneous, intratumoral). Although some issues are still matters of concern (delivery, toxicity, cost, and biological barriers), RNAi definitively opens a wide avenue for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 07 February 2018

    The published article contains an error in Figure 5. The term “Atu027” should be substituted by “Patisiran” in figure and legend.

Abbreviations

LNA:

Locked nucleic acid

LNP:

Lipid nanoparticle

LODER:

LOcal Drug EluteR

PEG:

Polyethylene glycol

PLGA:

poly(lactic-co-glycolic) acid

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

SNALPs:

Stable nucleic acid lipid particles

References

  1. Bobbin ML, Rossi JJ. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol. 2016;56:103–22.

    Article  PubMed  CAS  Google Scholar 

  2. Martinez T, Gonzalez MV, Roehl I, Wright N, Paneda C, Jimenez AI. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol Ther. 2014;22(1):81–91.

    Article  PubMed  CAS  Google Scholar 

  3. Hannon GJ. RNA interference. Nature. 2002;418(6894):244–51.

    Article  PubMed  CAS  Google Scholar 

  4. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001;2(2):110–9.

    Article  PubMed  CAS  Google Scholar 

  5. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  PubMed  CAS  Google Scholar 

  7. Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett. 2014;588(15):2550–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ketting RF. The many faces of RNAi. Dev Cell. 2011;20(2):148–61.

    Article  PubMed  CAS  Google Scholar 

  9. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457(7228):405–12.

    Article  PubMed  CAS  Google Scholar 

  11. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  12. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.

    Article  PubMed  CAS  Google Scholar 

  13. Brafman A, Mett I, Shafir M, Gottlieb H, Damari G, Gozlan-Kelner S, Vishnevskia-Dai V, Skaliter R, Einat P, Faerman A, Feinstein E, Shoshani T. Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest Ophthalmol Vis Sci. 2004;45(10):3796–805.

    Article  PubMed  Google Scholar 

  14. Rittenhouse KD, Hirakawa, B., Huang, W., Basile, A.S., Johnson, T.R., Shachar R.A. Dose-related gene silencing of RTP801 with the siRNA PF04523655 in Long Evans rat models of STZ induced diabetes and laser induced CNV [abstract]. Invest Ophthalmol Vis Sci. 2010;51:E-abstract 6447.

  15. Rittenhouse KD, Kalabat, D., Yang, A., Vicini, P., Johnson, T.R., Huang, W., Hirakawa, B.; Basile, A. S.; Schachar, R.A. Characterization of regional RTP801 gene expression within the retina and the concentration-effect relationship of PF-655, an RTP801-silencing siRNA, following intravitreous administration to diabetic rats [abstract]. Invest Ophthalmol Vis Sci. 2011;52:E-Abstract 5641.

  16. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Klamerus KJ, Chi-Burris K, Yan E, Paggiarino DA, Rosenblatt I, Aitchison R, Erlich SS, Group MCS. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET study). Ophthalmology. 2012;119(9):1867–73.

    Article  PubMed  Google Scholar 

  17. Rittenhouse KD, Johnson TR, Vicini P, Hirakawa B, Kalabat D, Yang AH, Huang W, Basile AS. RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-mer siRNA directed against RTP801. Invest Ophthalmol Vis Sci. 2014;55(3):1232–40.

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Basile AS, Klamerus KJ, Chi-Burris K, Yan E, Paggiarino DA, Rosenblatt I, Khan A, Aitchison R, Erlich SS, Group PFS. Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye (London, England). 2012;26(8):1099–105.

    Article  CAS  Google Scholar 

  19. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  PubMed  CAS  Google Scholar 

  20. Feinstein E, Ashush, H., Kleinman, M.E. et al. PF-0452655 [REDD14], an siRNA compound targeting RTP801, penetrates retinal cells producing target gene knockdown and avoiding TLR3 activation. Poster Present Assoc Res Vis Ophthalmol Annu Meet May 7, Ft Lauderdale, FL. 2009.

  21. Levenson JH, Kozarsky, A.. Visual acuity. In: Walker HK, Hall W.D., Hurst J.W., editor. Clinical methods, the history, physical, and laboratory examinations. Boston: Butterworths; 1990.

  22. Enslow R, Bhuvanagiri S, Vegunta S, Cutler B, Neff M, Stagg B. Association of Anti-VEGF injections with progression of geographic atrophy. Ophthalmol Eye Dis. 2016;8:31–2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gemenetzi M, Lotery AJ, Patel PJ. Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye (London, England) 2017;31(1):1–9.

  24. Amadio M, Govoni S, Pascale A. Targeting VEGF in eye neovascularization: What's new?: a comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacol Res. 2016;103:253–69.

    Article  PubMed  CAS  Google Scholar 

  25. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66.

    Article  PubMed  Google Scholar 

  26. Brown JR, Rezaee ME, Marshall EJ, Matheny ME. Hospital mortality in the United States following acute kidney injury. Biomed Res Int. 2016;2016:4278579.

    PubMed  PubMed Central  Google Scholar 

  27. Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36(4 Suppl):S146–51.

    Article  PubMed  Google Scholar 

  28. Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002;11(3):301–8.

    Article  PubMed  Google Scholar 

  29. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20(8):1754–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Braasch DA, Paroo Z, Constantinescu A, Ren G, Oz OK, Mason RP, Corey DR. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett. 2004;14(5):1139–43.

    Article  PubMed  CAS  Google Scholar 

  31. Agrawal S, Temsamani J, Galbraith W, Tang J. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet. 1995;28(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  32. Garin D, Ahmadi M, Gauchez AS, Bohic S, Boccard S, Cloetens P, Fagret D, Berger F, Briat A, Ghezzi C, Pelletier L. In vivo siRNA distribution and pharmacokinetics assessed by nuclear imaging are modulated according to radiolabelling site. Nucl Med Biol. 2015;42(12):958–66.

    Article  PubMed  CAS  Google Scholar 

  33. Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol. 1994;45(5):932–43.

    PubMed  CAS  Google Scholar 

  34. van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–7.

    Article  PubMed  CAS  Google Scholar 

  35. Viel T, Boisgard R, Kuhnast B, Jego B, Siquier-Pernet K, Hinnen F, Dolle F, Tavitian B. Molecular imaging study on in vivo distribution and pharmacokinetics of modified small interfering RNAs (siRNAs). Oligonucleotides. 2008;18(3):201–12.

    Article  PubMed  CAS  Google Scholar 

  36. Imamura R, Isaka Y, Sandoval RM, Ori A, Adamsky S, Feinstein E, Molitoris BA, Takahara S. Intravital two-photon microscopy assessment of renal protection efficacy of siRNA for p53 in experimental rat kidney transplantation models. Cell Transplant. 2010;19(12):1659–70.

    Article  PubMed  Google Scholar 

  37. Thompson JD, Kornbrust DJ, Foy JW, Solano EC, Schneider DJ, Feinstein E, Molitoris BA, Erlich S. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Therapeutics. 2012;22(4):255–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11(11):2279–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet. 2004;364(9447):1814–27.

    Article  PubMed  Google Scholar 

  40. [Internet] QP. Quark Pharmaceuticals Reports Favorable Results from Phase II Clinical Trial Evaluating Investigational siRNA QPI-1002. 2014 News release July 28, 2014. Available from: http://quarkpharma.com/?p=11621.

  41. [Internet]. QP. Quark Pharmaceuticals and Major Pharmaceutical Company Enter into Licensing Option Agreement for the p53 Suppressor Drug QPI-1002, the First siRNA Administered Systemically in Human. 2010 News release August 18, 2010.

  42. Kisiswa L, Dervan AG, Albon J, Morgan JE, Wride MA. Retinal ganglion cell death postponed: giving apoptosis a break? Ophthalmic Res. 2010;43(2):61–78.

    Article  PubMed  Google Scholar 

  43. Levin LA. Axonal loss and neuroprotection in optic neuropathies. Can J Ophthalmol. 2007;42(3):403–8.

    Article  PubMed  Google Scholar 

  44. Schmidt KG, Bergert H, Funk RH. Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol. 2008;6(2):164–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kurokawa T, Katai N, Shibuki H, Kuroiwa S, Kurimoto Y, Nakayama C, Yoshimura N. BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons in retinal ganglion cell layer after transient ischemia. Invest Ophthalmol Vis Sci. 1999;40(12):3006–11.

    PubMed  CAS  Google Scholar 

  46. Singh M, Savitz SI, Hoque R, Gupta G, Roth S, Rosenbaum PS, Rosenbaum DM. Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem. 2001;77(2):466–75.

    Article  PubMed  CAS  Google Scholar 

  47. Vigneswara V, Berry M, Logan A, Ahmed Z. Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 2012;7(12):e53473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N, Brafman A, Spivak I, Prasad N, Mett I, Shalom E, Alpert E, Di Polo A, Feinstein E, Logan A. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2011;2:e173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Solano EC, Kornbrust DJ, Beaudry A, Foy JW, Schneider DJ, Thompson JD. Toxicological and pharmacokinetic properties of QPI-1007, a chemically modified synthetic siRNA targeting caspase 2 mRNA, following intravitreal injection. Nucleic Acid Therapeutics. 2014;24(4):258–66.

    Article  PubMed  CAS  Google Scholar 

  50. Vigneswara V, Ahmed Z. Long-term neuroprotection of retinal ganglion cells by inhibiting caspase-2. Cell Death Dis. 2016;2:16044.

    Article  CAS  Google Scholar 

  51. [Internet]. QP. Quark Pharmaceuticals Doses First Non-Arteritic Anterior Ischemic Optic Neuropathy (NAION) Patient in Stratum II of its Clinical Study of siRNA Drug Candidate QPI-1007. 2010 News release October 20, 2010. Available from: http://quarkpharma.com/?p=11968.

  52. [Internet]. QP. Quark Announces First Patient Dosed in a Phase IIa Trial Evaluating QPI-1007 for Neuroprotection in Patients with Acute Primary Angle Closure Glaucoma. 2014 News release, June 25, 2014. Available from: http://quarkpharma.com/?p=11625.

  53. [Internet] QP. Quark Pharmaceuticals Awarded Key Patent for QPI-1007 Ocular Neuroprotectant. 2016 News release July 28, 2016. Avaeilable from: http://quarkpharma.com/?p=12340.

  54. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  PubMed  CAS  Google Scholar 

  55. Liu X. Targeting polo-like kinases: a promising therapeutic approach for cancer treatment. Transl Oncol. 2015;8(3):185–95.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alabi C, Vegas A, Anderson D. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Curr Opin Pharmacol. 2012;12(4):427–33.

    Article  PubMed  CAS  Google Scholar 

  57. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–77.

    Article  PubMed  CAS  Google Scholar 

  58. Semple SC, Judge, A.D., Robbins, M., Klimuk, S., Eisenhardt, M., Crosley, E., et al. Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1 [abstract]. Cancer Res 2011;71 Suppl 8:Abstract nr 2829.

  59. Ramanathan RK, Hamburg, S.I., Borad, M.J., Seetharam, M., Kundranda, M.N., Lee, P., et al. A phase I dose escalation study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors [abstract]. Cancer Res 2013;73 (Suppl 8):Abstract nr LB-289.

  60. [Internet]. TPC. Tekmira Presents Data From Its TKM-PLK1 Phase I Clinical Trial at American Association for Cancer Research (AACR) Meeting April 9, 2013. Available from: https://globenewswire.com/news-release/2013/04/09/537016/10027901/en/Tekmira-Presents-Data-From-Its-TKM-PLK1-Phase-I-Clinical-Trial-at-American-Association-for-Cancer-Research-AACR-Meeting.html.

  61. Northfelt D.W. H, S.I., Borad, M.J., Seetharam, M., Curtis, K.K., Lee, P., et al. A phase I dose-escalation study of TKM-080301, a RNAi therapeutic directed against polo-like kinase 1 (PLK1), in patients with advanced solid tumors: Expansion cohort evaluation of biopsy samples for evidence of pharmacodynamic effects of PLK1 inhibition [abstract]. J Clin Oncol 2013;31 Suppl:abstr TPS2621.

  62. Demeure MJ, Armaghany, T., Ejadi, S., Ramanathan, R.K., Elfiky, A., Jonathan R. Strosberg, J.R., et al.. A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC) [abstract]. J Clin Oncol 2016;34 Suppl:abstr 2547.

  63. Gutteridge RE, Ndiaye MA, Liu X, Ahmad N. Plk1 inhibitors in cancer therapy: from laboratory to clinics. Mol Cancer Ther. 2016;15(7):1427–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Unsal-Kacmaz K, Ragunathan S, Rosfjord E, Dann S, Upeslacis E, Grillo M, Hernandez R, Mack F, Klippel A. The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol. 2012;6(3):284–98.

    Article  PubMed  CAS  Google Scholar 

  65. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68(23):9788–98.

    Article  PubMed  CAS  Google Scholar 

  66. Santel A, Aleku M, Roder N, Mopert K, Durieux B, Janke O, Keil O, Endruschat J, Dames S, Lange C, Eisermann M, Loffler K, Fechtner M, Fisch G, Vank C, Schaeper U, Giese K, Kaufmann J. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res. 2010;16(22):5469–80.

    Article  PubMed  CAS  Google Scholar 

  67. Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, Lange C, Giese K, Kaufmann J, Khan M, Drevs J. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol. 2014;32(36):4141–8.

    Article  PubMed  CAS  Google Scholar 

  68. Strumberg D, Schultheis B, Traugott U, Vank C, Santel A, Keil O, Giese K, Kaufmann J, Drevs J. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther. 2012;50(1):76–8.

    Article  PubMed  CAS  Google Scholar 

  69. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, Dames S, Loffler K, Fechtner M, Arnold W, Giese K, Klippel A, Kaufmann J. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 2006;13(16):1222–34.

    Article  PubMed  CAS  Google Scholar 

  70. [Internet] ST. Atu027 update. 5 April 2016. Available from: http://silence-therapeutics-com.s3-eu-west-1.amazonaws.com/app/uploads/2016/04/05064530/Atu027.pdf.

  71. Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, Marechal R, Van Laethem JL, Ducreux M. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer. 2016;57:10–22.

    Article  PubMed  Google Scholar 

  72. Ansari D, Gustafsson A, Andersson R. Update on the management of pancreatic cancer: surgery is not enough. World J Gastroenterol. 2015;21(11):3157–65.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Quigley HA. Glaucoma Lancet. 2011;377(9774):1367–77.

    Article  PubMed  Google Scholar 

  74. Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol. 2008;53 Suppl1:S3–10.

  75. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.

    Article  PubMed  Google Scholar 

  76. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. J Am Med Assoc. 2014;311(18):1901–11.

    Article  CAS  Google Scholar 

  77. Dejneka NS, Wan S, Bond OS, Kornbrust DJ, Reich SJ. Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vis. 2008;14:997–1005.

    PubMed  PubMed Central  Google Scholar 

  78. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452(7187):591–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13(6):559–62.

    Article  PubMed  CAS  Google Scholar 

  81. Elena PP, Kosina-Boix M, Moulin G, Lapalus P. Autoradiographic localization of beta-adrenergic receptors in rabbit eye. Invest Ophthalmol Vis Sci. 1987;28(8):1436–41.

    PubMed  CAS  Google Scholar 

  82. Moreno-Montanes J, Sadaba B, Ruz V, Gomez-Guiu A, Zarranz J, Gonzalez MV, Paneda C, Jimenez AI. Phase I clinical trial of SYL040012, a small interfering RNA targeting beta-adrenergic receptor 2, for lowering intraocular pressure. Mol Ther. 2014;22(1):226–32.

    Article  PubMed  CAS  Google Scholar 

  83. Gonzalez V, Palumaa K, Turman K, Muñoz FJ, Jordan J, García J, Ussa F, Antón A, Gutierrez E, Moreno-Montanes J. Phase 2 of bamosiran (SYL040012), a novel RNAi based compound for the treatment of increased intraocular pressure associated to glaucoma [abstract]. Invest Ophthalmol Vis Sci. 2014;55:564.

    Google Scholar 

  84. Gonzalez V, Moreno-Montanes J, Oll M, Sall KN, Palumaa K, Dubiner H, Turman K, Muñoz-Negrete F, Ruz V, Jimenez AI. Results of Phase IIB SYLTAG clinical trial with bamosiran in patients with glaucoma [abstract]. Investig Ophthalmol Vis Sci. 2016;57:3023.

    Google Scholar 

  85. [Internet] S. Sylentis announces top-line results from Phase II study SYLTAG for RNAi drug bamosiran (SYL040012) in Glaucoma. 2015.

  86. Muller ME, van der Velde N, Krulder JW, van der Cammen TJ. Syncope and falls due to timolol eye drops. BMJ. 2006;332(7547):960–1.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Maenpaa J, Pelkonen O. Cardiac safety of ophthalmic timolol. Expert Opin Drug Saf. 2016;15(11):1549–61.

    Article  PubMed  CAS  Google Scholar 

  88. Vander Zanden JA, Valuck RJ, Bunch CL, Perlman JI, Anderson C, Wortman GI. Systemic adverse effects of ophthalmic beta-blockers. Ann Pharmacother. 2001;35(12):1633–7.

    Article  PubMed  CAS  Google Scholar 

  89. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6(5):357–72.

    Article  PubMed  CAS  Google Scholar 

  90. Gonzalez V, Jímenez AI, Martínez T. Targeting TRPV1 receptor for the treatment of ocular pain associated to dry eye syndrome [abstract]. Invest Ophthalmol Vis Sci. 2011;52(14):3844.

    Google Scholar 

  91. Ruz V, Gonzalez V, Martinez-Garcia C, Pañeda C, Jiménez AI. SYL1001, a new treatment based on RNAi for the treatment of ocular pain [abstract]. Invest Ophthalmol Vis Sci. 2014;55(13):3673.

    Google Scholar 

  92. Gonzalez V, Moreno-Montañé J, Sádaba B, Ruz V, Jímenez AI. SYL1001 for treatment of ocular discomfort in dry eye: safety and tolerance (phase I study) [abstract]. Invest Ophthalmol Vis Sci. 2012;53(14):575.

    Google Scholar 

  93. Jiménez AI, Castilho JMB, Moreno-Montanes J, Jimenez-Alfaro I, Muñoz-Negrete F, Palumaa K, Turman K, Paneda C, Martinez T, Ruz V, Gonzalez V. Results of clinical trials with a novel RNA-based therapy (SYL1001) to treat patients with ocular pain associated to dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(12):2878.

    Google Scholar 

  94. Milner MS, Beckman KA, Luchs JI, Allen QB, Awdeh RM, Berdahl J, Boland TS, Buznego C, Gira JP, Goldberg DF, Goldman D, Goyal RK, Jackson MA, Katz J, Kim T, Majmudar PA, Malhotra RP, MB MD, Rajpal RK, Raviv T, Rowen S, Shamie N, Solomon JD, Stonecipher K, Tauber S, Trattler W, Walter KA, GOt W, Weinstock RJ, Wiley WF, Yeu E. Dysfunctional tear syndrome: dry eye disease and associated tear film disorders - new strategies for diagnosis and treatment. Curr Opin Ophthalmol. 2017;27(Suppl 1):3–47.

    Article  PubMed  Google Scholar 

  95. Al-Saedi Z, Zimmerman A, Bachu RD, Dey S, Shah Z, Baugh R, Boddu SH. Dry eye disease: present challenges in the management and future trends. Curr Pharm Des. 2016;22(28):4470–90.

    Article  PubMed  CAS  Google Scholar 

  96. Sekijima Y. Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther. 2014;39(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  97. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Ann Med. 2015;47(8):625–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, Slama MS, Hazenberg BP, Coelho T. European Network for T-F. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, Perez J, Chiesa J, Warrington S, Tranter E, Munisamy M, Falzone R, Harrop J, Cehelsky J, Bettencourt BR, Geissler M, Butler JS, Sehgal A, Meyers RE, Chen Q, Borland T, Hutabarat RM, Clausen VA, Alvarez R, Fitzgerald K, Gamba-Vitalo C, Nochur SV, Vaishnaw AK, Sah DW, Gollob JA, Suhr OB. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29.

    Article  PubMed  CAS  Google Scholar 

  100. Szebeni J, Muggia F, Gabizon A, Barenholz Y. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev. 2011;63(12):1020–30.

    Article  PubMed  CAS  Google Scholar 

  101. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, Schmidt H, Waddington-Cruz M, Campistol JM, Bettencourt BR, Vaishnaw A, Gollob J, Adams D. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet Journal of Rare Diseases. 2015;10:109.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Koike H, Tanaka F, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, Fujitake J, Kawanami T, Kato T, Yamamoto M, Sobue G. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry. 2012;83(2):152–8.

    Article  PubMed  Google Scholar 

  103. Coelho T, Suhr OB, Conceicao I, Waddington-Cruz M, Schmidt H, Buades J, Campistol JM, Pouget J, Berk J, Falzone R, White L, Bettencourt B, Cehelsky J, Nochur S, Vaishnaw A, Gollob J, Adams D. Phase 2 open-label extension study of patisiran, an investigational RNAi therapeutic for the treatment of familial amyloid polyneuropathy [abstract]. Abstract [S9003] presented at 67th Annual Meeting of the American Academy of Neurology. 2015.

  104. [Internet] AP. Updates from Patisiran and Revusiran, in Development for the Treatment of hATTR Amyloidosis Available from: http://www.alnylam.com/capella/presentations/updates-from-patisiran-and-revusiran-for-hattr-amyloidosis/.

  105. Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175(4025):949–55.

    Article  PubMed  CAS  Google Scholar 

  106. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  PubMed  CAS  Google Scholar 

  107. Adams D, Cauquil C, Labeyrie C, Beaudonnet G, Algalarrondo V, Theaudin M. TTR kinetic stabilizers and TTR gene silencing: a new era in therapy for familial amyloidotic polyneuropathies. Expert Opin Pharmacother. 2016;17(6):791–802.

    Article  PubMed  CAS  Google Scholar 

  108. Kerschen P, Plante-Bordeneuve V. Current and future treatment approaches in transthyretin familial amyloid polyneuropathy. Curr Treat Options Neurol. 2016;18(12):53.

    Article  PubMed  Google Scholar 

  109. Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z, Orbach A, Shemi A, Golan T, Domb AJ, Yavin E, Giladi H, Rivkin L, Simerzin A, Eliakim R, Khalaileh A, Hubert A, Lahav M, Kopelman Y, Goldin E, Dancour A, Hants Y, Arbel-Alon S, Abramovitch R, Shemi A, Galun E. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(51):20723–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Shemi A, Khvalevsky EZ, Gabai RM, Domb A, Barenholz Y. Multistep, effective drug distribution within solid tumors. Oncotarget. 2015;6(37):39564–77.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ramot Y, Rotkopf S, Gabai RM, Zorde Khvalevsky E, Muravnik S, Marzoli GA, Domb AJ, Shemi A, Nyska A. Preclinical safety evaluation in rats of a polymeric matrix containing an siRNA drug used as a local and prolonged delivery system for pancreatic cancer therapy. Toxicol Pathol. 2016;44(6):856–65.

    Article  PubMed  CAS  Google Scholar 

  112. Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, Domb A, Harari G, David EB, Raskin S, Goldes Y, Goldin E, Eliakim R, Lahav M, Kopleman Y, Dancour A, Shemi A, Galun E. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 2015;6(27):24560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, Xie T, Marto JA, Chen Z, Gray NS, Westover KD. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci U S A. 2014;111(24):8895–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351(6273):604–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Therapeutics. 2011;21(3):133–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58.

    Article  PubMed  CAS  Google Scholar 

  119. Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199(3):407–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Molecular Medicine. 2014;6(7):851–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol. 2015;62(2):448–57.

    Article  PubMed  CAS  Google Scholar 

  122. Thibault PA, Wilson JA. Targeting miRNAs to treat hepatitis C virus infections and liver pathology: inhibiting the virus and altering the host. Pharmacol Res. 2013;75:48–59.

    Article  PubMed  CAS  Google Scholar 

  123. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  PubMed  CAS  Google Scholar 

  124. Hildebrandt-Eriksen ES, Aarup V, Persson R, Hansen HF, Munk ME, Orum H. A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Therapeutics. 2012;22(3):152–61.

    Article  PubMed  CAS  Google Scholar 

  125. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.

    Article  PubMed  CAS  Google Scholar 

  126. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  PubMed  CAS  Google Scholar 

  127. van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, Zeuzem S, Lawitz EJ, Rodriguez-Torres M, Kupcova V, Wiercinska-Drapalo A, Hodges MR, Janssen HL, Reesink HW. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir Res. 2014;111:53–9.

    Article  PubMed  CAS  Google Scholar 

  128. Ottosen S, Parsley TB, Yang L, Zeh K, van Doorn LJ, van der Veer E, Raney AK, Hodges MR, Patick AK. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother. 2015;59(1):599–608.

    Article  PubMed  CAS  Google Scholar 

  129. Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci. 2016;23(1):74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Buxton ILO, Benet LZ. Pharmacokinetics: The Dynamics of Drug Absortion, Distribution, Metabolism, and Elimination. In: Goodman and Gilman's The Pharmacological Basis of Therapeutics. 12th Ed.: McGraw-Hill Companies, Inc.; 2011.

  131. Yu ML. Hepatitis C Treatment from “response-guided” to “resource-guided” therapy in the transition era from IFN-containing to IFN-free regimens. J Gastroenterol Hepatol. 2017. doi:10.1111/jgh.13747.

  132. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Shan G. RNA interference as a gene knockdown technique. Int J Biochem Cell Biol. 2010;42(8):1243–51.

    Article  PubMed  CAS  Google Scholar 

  134. Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005;107(2):222–39.

    Article  PubMed  CAS  Google Scholar 

  136. Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet. 2003;362(9393):1401–3.

    Article  PubMed  CAS  Google Scholar 

  137. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53.

    Article  PubMed  CAS  Google Scholar 

  138. Sullenger BA, Nair S. From the RNA world to the clinic. Science. 2016;352(6292):1417–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006;372:137–41.

    Article  PubMed  CAS  Google Scholar 

  141. Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A, Worm J, Hedtjarn M, Souleimanian N, Miller P, Soifer HS, Castanotto D, Benimetskaya L, Orum H, Koch T. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 2010;38(1):e3.

    Article  PubMed  CAS  Google Scholar 

  142. Soifer HS, Koch T, Lai J, Hansen B, Hoeg A, Oerum H, Stein CA. Silencing of gene expression by gymnotic delivery of antisense oligonucleotides. Methods Mol Biol. 2012;815:333–46.

    Article  PubMed  CAS  Google Scholar 

  143. Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (London, England). 2015;10(14):2199–228.

    Article  CAS  Google Scholar 

  144. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    Article  PubMed  CAS  Google Scholar 

  145. Sales TT, Resende FF, Chaves NL, Titze-De-Almeida SS, Bao SN, Brettas ML, Titze-De-Almeida R. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide. Oncol Lett. 2016;12(4):2581–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Castania V, Issy AC, Silveira JW, Ferreira FR, Titze-de-Almeida SS, Resende FF, Ferreira NR, Titze-de-Almeida R, Defino HL, Del Bel E. The Presence of the Neuronal Nitric Oxide Synthase Isoform in the Intervertebral Disk. Neurotox Res. 2016.

  147. Titze-de-Almeida SS, Lustosa CF, Horst CH, Bel ED, Titze-de-Almeida R. Interferon gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition. Neurochem Res. 2014;39(12):2452–64.

    Article  PubMed  CAS  Google Scholar 

  148. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987;84(21):7413–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Rossi JJ. RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther. 2006;13(7):583–4.

    Article  PubMed  CAS  Google Scholar 

  150. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23(8):1002–7.

    Article  PubMed  CAS  Google Scholar 

  151. [Internet] ABC. LNP Delivery Platform. 2016.

  152. Boado RJ. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res. 2007;24(9):1772–87.

    Article  PubMed  CAS  Google Scholar 

  153. de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47:323–55.

    Article  PubMed  CAS  Google Scholar 

  154. Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg. 2015;122(3):697–706.

    Article  PubMed  Google Scholar 

  155. Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z, Peer D. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano. 2015;9(2):1581–91.

    Article  PubMed  CAS  Google Scholar 

  156. Querbes W, Ge P, Zhang W, Fan Y, Costigan J, Charisse K, Maier M, Nechev L, Manoharan M, Kotelianski V, Sah DW. Direct CNS delivery of siRNA mediates robust silencing in oligodendrocytes. Oligonucleotides. 2009;19(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  157. Haussecker D, Kay MA. RNA interference. Drugging RNAi Science. 2015;347(6226):1069–70.

    PubMed  Google Scholar 

  158. Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6(240):240ps247.

    Article  Google Scholar 

  159. Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release. 2014;195:49–54.

    Article  PubMed  CAS  Google Scholar 

  160. Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - candidates for gene silencing therapeutics. Eur J Pharm Biopharm. 2016;107:321–40.

    Article  PubMed  CAS  Google Scholar 

  161. Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel'in AV, Milstein S, Taneja N, O'Shea J, Shaikh S, Zhang L, van der Sluis RJ, Jung ME, Akinc A, Hutabarat R, Kuchimanchi S, Fitzgerald K, Zimmermann T, van Berkel TJ, Maier MA, Rajeev KG, Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61.

    Article  PubMed  CAS  Google Scholar 

  162. Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, Hutabarat R, Nochur S, Vaishnaw A, Gollob J. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25(1):71–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. [Internet] AP. Alnylam Pharmaceuticals Discontinues Revusiran Development. Available from: http://investors.alnylam.com/releasedetail.cfm?ReleaseID=992320.

  164. Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44(14):6518–48.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opinion on Drug Delivery. 2016;13(3):401–19.

    Article  PubMed  CAS  Google Scholar 

  166. Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release. 2015;203:1–15.

    Article  PubMed  CAS  Google Scholar 

  167. Cuellar TL, Barnes D, Nelson C, Tanguay J, Yu SF, Wen X, Scales SJ, Gesch J, Davis D, van Brabant SA, Leake D, Vandlen R, Siebel CW. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43(2):1189–203.

    Article  PubMed  CAS  Google Scholar 

  168. Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: a promising chemical antibody for cancer therapy. Oncotarget. 2016;7(12):13446–63.

    PubMed  PubMed Central  Google Scholar 

  169. McNamara 2nd JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–15.

    Article  PubMed  CAS  Google Scholar 

  170. Berezhnoy A, Castro I, Levay A, Malek TR, Gilboa E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest. 2014;124(1):188–97.

    Article  PubMed  CAS  Google Scholar 

  171. Thiel WH, Thiel KW, Flenker KS, Bair T, Dupuy AJ, McNamara 2nd JO, Miller FJ, Giangrande PH. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol Biol. 2015;1218:187–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Titze-de-Almeida.

Electronic supplementary material

Box I

(DOCX 21.4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S.S. The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharm Res 34, 1339–1363 (2017). https://doi.org/10.1007/s11095-017-2134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2134-2

Key words

Navigation