Skip to main content

Advertisement

Log in

Estimation of Intra-vitreal Half-Lifes in the Rabbit Eye with Semi-mechanistic Equations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop an alternative method for estimating vitreal half-lifes in the rabbit eye based on simple equations for the physical processes of dissipation and the physiochemical properties of therapeutic substances applied by intravitreal drug administration.

Methods

Equations were derived to describe diffusion in the vitreous humor and permeation through the back-of-the-eye tissue, and the volume of distribution. The model was validated using reported half-life values from 83 compounds collected from literature.

Results

The rate limiting step for dissipation from the vitreous depends mainly on the molecular weight. Dissipation of very low molecular weight (MW) substances (<350 Da) is limited by diffusional transport to the back of the eye, for substances with a MW >350 Da uptake into the back of the eye tissue becomes limiting, and large molecules >500 Da predominantly take an alternative path being cleared through the front of the eye for which diffusion towards the posterior chamber turns out to be limiting. Taking the three rate determining processes into account, the derived model can estimate dissipation rates and respectively vitreal half-life values of small compounds and macromolecules from their molecular weight with very few exceptions.

Conclusions

The equations derived in this analysis provide a simple method to predict vitreal half-lifes for a diverse group of molecules and can be easily implemented in early drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A:

Cross section area

BoE:

Back of eye

CFD:

Computational fluid dynamics

D:

Diffusion coefficient

d:

Distance of diffusion path

Da:

Dalton

eta:

Viscosity of the liquid

f:

Fraction

fu:

Fraction unbound

IVT:

Intravitreal

kB :

Boltzmann constant

kdiss :

Dissipation rate

Km:w:

Membrane/water partition coefficient

Ko:w:

Octanol/water partition coefficient

Kp:w:

Protein/water partition coefficient

Kv:w:

Vitreous/water partition coefficient

MW:

Molecular weight

P:

Permeability

PC:

Physicochemical

QSPKR:

Quantitative Structure-Pharmacokinetic Relationships

r:

Radius

R0 :

Hydrodynamic radius of the diffusing particle

T:

Temperature

t1/2 :

Half-life

Vd :

Volume of distribution

Vvit :

Volume of the vitreous

References

  1. Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov. 2012;11:541–59.

    Article  CAS  PubMed  Google Scholar 

  2. del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

    Article  PubMed  Google Scholar 

  3. Washington N, Washington C, Wilson C. Physiological pharmaceutics: barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001.

    Google Scholar 

  4. Del Amo EM, Vellonen KS, Kidron H, Urtti A. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015;95:215–26.

    Article  PubMed  Google Scholar 

  5. Durairaj C, Shah JC, Senapati S, Kompella UB. Prediction of vitreal half-life based on drug physicochemical properties: Quantitative Structure–Pharmacokinetic Relationships (QSPKR). Pharm Res. 2009;26:1236–60.

    Article  CAS  PubMed  Google Scholar 

  6. Haghjau N, Abdekhodaie MJ, Cheng YL. Retina-choroid-sclera permeability for ophthalmic drug in the vitreous to blood direction: quantitative assessment. Pharm Res. 2013;30:41–59.

    Article  Google Scholar 

  7. Haghjou N, Abdekhodaie MJ, Cheng YL, Saadatmand M. Computer modeling of drug distribution after intravitreal administration. World Acad Sci Eng Technol. 2011;5:601–11.

    Google Scholar 

  8. Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res. 2002;19:1636–47.

    Article  CAS  PubMed  Google Scholar 

  9. Stay MS, Xu J, Randolph TW, Barocas VH. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20:96–102.

    Article  CAS  PubMed  Google Scholar 

  10. Missel PJ. Simulating intravritreal injections in anatomically accurate models for rabbit, Monkey, and human eyes. Pharm Res. 2012;29:3251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahn J, Hyuncheol KH, Woo SJ, Park JH, Park S, Hwang DJ, et al. Pharmacokinetics of intravitreally injected bevacizumab in vitrectomized eyes. J Ocul Pharmacol Ther. 2013;29:612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears L, editor. Pharmacology of the eye. Berlin: Springer; 1984.

    Google Scholar 

  13. Moseley H, Foulds HW, Allan D, Kyle PM. Routes of clearance of radioactive water from the rabbit vitreous. Br J Ophthalmol. 1984;68:145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laurent UBG, Fraser JRE. Turnover of hyaluronate in the aqueaous humor and vitreous body of the rabbit. Exp Eye Res. 1983;36:493–504.

    Article  CAS  PubMed  Google Scholar 

  15. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72. 16381955.

    Article  CAS  PubMed  Google Scholar 

  16. Lieb WR, Stein WD. The molecular basis of simple diffusion within biological membranes. In: Bronner F, Kleinzeller A, editors. Current topics in membranes and transport, vol. 2. New York: Academic; 1971.

    Google Scholar 

  17. Polson A. Some aspects of diffusion in solution and a definition of a colloidal particle. J Phys Chem. 1950;54:649–52.

    Article  CAS  Google Scholar 

  18. Abdelkawi SA, Abdel-Salam AM, Ghoniem DF, Ghaly SK. Vitreous humour rheology after Nd:YAG laser photo disruption. Cell Biochem Biophys. 2014;68:267–74.

    Article  CAS  PubMed  Google Scholar 

  19. Reichenbach A, Schnitzer J, Friedrich A, Ziegert W, Brückner G, Schober W. Development of rabbit retina, I. Size of eye and retina, and postnatal cell proliferation. Anat Embryol. 1991;183:287–97.

    Article  CAS  PubMed  Google Scholar 

  20. Collander R, Bärlund H. Permeabilitätsstudien an Chara Ceratophyllia. Acta Bot Fenn. 1933;11:1–114.

    Google Scholar 

  21. Levin VA, Dolginow D, Landahl L, Yorke C, Csetjey J. Relationship of octanol/water partition coefficient and molecular weight to cellular permeability and partitioning in S49 lymphoma cells. Pharm Res. 1984;1:259–66.

    Article  CAS  PubMed  Google Scholar 

  22. Lieb WR, Stein WD. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature. 1969;224:240–3.

    Article  CAS  PubMed  Google Scholar 

  23. Schmitt W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol in Vitro. 2008;22:457–67.

    Article  CAS  PubMed  Google Scholar 

  24. Kleinberg TT, Tzekov RT, Stein L, Ravi N, Kaushal S. Vitreous substitutes: a comprehensive review. Surv Ophthalmol. 2011;56:300–23.

    Article  PubMed  Google Scholar 

  25. Kim JO, Cotlier E. Phospholipid distributions and fatty acid composition of lysophosphatidylcholine and phosphatidylcholine in rabbit aqueous humor, lens and vitreous. Exp Eye Res. 1976;22:569–76.

    Article  CAS  PubMed  Google Scholar 

  26. Keldenich J, Schmitt W, Willmann S. A physiological model for predicting organ/plasma partitioning and volume of distribution. In: Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G, editors. Biological and physicochemical profiling in drug research. VHCA, Zurich, and Wiley-VCH, Weinheim; 2004.

  27. Renkin EM. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954;38:225–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu W, Liu QF, Perkins R, Drusano G, Louie A, Madu A, et al. Pharmacokinetics of sparfloxacin in the serum and vitreous humor of rabbits: physicochemical properties that regulate penetration of quinolone antimicrobials. Antimicrob Agents Chemother. 1988;42:1417–23.

    Google Scholar 

  29. Laude A, Tan LE, Wilson CG, Lascaratos G, Elashry M, Aslam T, et al. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 2010;29:466–75.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The author thanks Anne von Bodman for her writing support. Likewise the critical questions and suggestion of the reviewers are acknowledged, which helped to improve the manuscript very much in a revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Schmitt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, W. Estimation of Intra-vitreal Half-Lifes in the Rabbit Eye with Semi-mechanistic Equations. Pharm Res 34, 49–57 (2017). https://doi.org/10.1007/s11095-016-2037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2037-7

KEY WORDS

Navigation