Skip to main content
Log in

Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Effects of Nasal Spray Suspension Particle Size and Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product.

Methods

Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated.

Results

Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions.

Conclusions

The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AEF:

Absorption enhancement factor

ASL:

Airway surface liquid

CFD:

Computational fluid dynamics

DAC:

Dissolution-absorption-clearance

MF:

Mometasone furoate

PK:

Pharmacokinetic

References

  1. Li BV, Jin F, Lee SL, Bai T, Chowdhury B, Caramenico HT, et al. Bioequivalence for locally acting nasal spray and nasal aerosol products: standard development and generic approval. AAPS J. 2013;15(3):875–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davit BM, Nwakama PE, Buehler GJ, Conner DP, Haidar SH, Patel DT, et al. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the united states food and drug administration. Ann Pharmacother. 2009;43(10):1583–97.

    Article  CAS  PubMed  Google Scholar 

  3. Suman JD, Laube BL, Dalby R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response. J Aerosol Med. 2006;19(4):510–21.

    Article  CAS  PubMed  Google Scholar 

  4. Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137–42.

    Article  PubMed  Google Scholar 

  5. Pires Ai, Fortuna A, Alves G, Fal1 ao Ai. Intranasal Drug Delivery: How, Why and What For? Journal of Pharmacy and Pharmaceutical Sciences. 2009;12(3):288-311.

  6. Buttini F, Miozzi M, Balducci AG, Royall PG, Brambilla G, Colombo P, et al. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int J Pharm. 2014;465(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  7. Arora D, Shah KA, Halquist MS, Sakagami M. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res. 2010;27(5):786–95.

    Article  CAS  PubMed  Google Scholar 

  8. Schroeter JD, Kimbell JS, Asgharian B. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J Aerosol Med. 2006;19(3):301–13.

    Article  CAS  PubMed  Google Scholar 

  9. Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci. 2007;38(4):398–419.

    Article  CAS  Google Scholar 

  10. Liu Y, Matida EA, Johnson MR. Experimental measurements and computational modeling of aerosol deposition in the Carleton-civic standardized human nasal cavity. J Aerosol Sci. 2010;41(6):569–86.

    Article  CAS  Google Scholar 

  11. Inthavong K, Ge Q, Se CMK, Yang W, Tu JY. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J Aerosol Sci. 2011;42(2):100–13.

    Article  CAS  Google Scholar 

  12. Schroeter JD, Garcia GJM, Kimbell JS. Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci. 2011;42(1):52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xi J, Si X, Kim JW, Berlinski A. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-Old child. J Aerosol Sci. 2011;42(3):156–73.

    Article  CAS  Google Scholar 

  14. Kelly JT, Asgharian B, Kimbell JS, Wong BA. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci Technol. 2004;38(11):1063–71.

    Article  CAS  Google Scholar 

  15. Kelly JT, Asgharian B, Kimbell JS, Wong BA. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: ultrafine particles. Aerosol Sci Technol. 2004;38(11):1072–9.

    Article  CAS  Google Scholar 

  16. Garcia GJM, Tewksbury EW, Ba W, Kimbell JS. Interindividual Variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm Drug Deliv. 2009;22(2):139–55.

    Article  PubMed  Google Scholar 

  17. Shah SA, Dickens CJ, Ward DJ, Banaszek AA, George C, Horodnik W. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition. J Aerosol Med Pulm Drug Deliv. 2014;26:1–9.

    Google Scholar 

  18. Shah SA, Berger RL, McDermott J, Gupta P, Monteith D, Connor A, et al. Regional deposition of mometasone furoate nasal spray suspension in humans. Allergy Asthma Proc. 2015;36(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  19. Kimbell JS, Subramaniam RP. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal Toxicol. 2001;13(5):325–34.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Kleinstreuer C, Kim CS. Transport and uptake of MTBE and ethanol vapors in a human upper airway model. Inhal Toxicol. 2006;18(3):169–84.

    Article  CAS  PubMed  Google Scholar 

  21. Tian G, Longest PW. Development of a CFD boundary condition to model transient vapor absorption in the respiratory airways. J Biomech Eng. 2010;132(5):051003.

    Article  PubMed  Google Scholar 

  22. Tian G, Longest PW. Transient absorption of inhaled vapors into a multilayer mucus-tissue-blood system. Ann Biomed Eng. 2010;38(2):517–36.

    Article  PubMed  Google Scholar 

  23. Bush ML, Frederick CB, Kimbell JS, Ultman JS. A CFD PBPK Hybrid model for simulating Gas and vapor uptake in the Rat nose. Toxicol Appl Pharmacol. 1998;150(1):133–45.

    Article  CAS  PubMed  Google Scholar 

  24. Rygg A, Longest PW. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2015; In press.

  25. Xi J, Longest PW. Numerical Predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transf. 2008;51(23-24):5562–77.

    Article  Google Scholar 

  26. Fry FA, Black A. Regional deposition and clearance of particles in the human nose. J Aerosol Sci. 1973;4(2):113–24.

    Article  Google Scholar 

  27. Illum L. Nasal drug delivery - possibilities, problems and solutions. J Control Release. 2003;87(1-3):187–98.

    Article  CAS  PubMed  Google Scholar 

  28. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1-2):146–57.

    Article  CAS  PubMed  Google Scholar 

  29. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal Mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640–65.

    Article  CAS  PubMed  Google Scholar 

  30. Beule AG. Physiology and Pathophysiology of the Paranasal Sinuses. GMS Current Topics in Otorhinolaryngology - Head and Neck Surgery. 2010; 9

  31. Quraishi MS, Jones NS, Mason J. The rheology of nasal mucus: a review. Clin Otolaryngol Allied Sci. 1998;23(5):403–13.

    Article  CAS  PubMed  Google Scholar 

  32. McLean J, Bacon J, Mathews K, Thrall J, Banas J, Hedden J, et al. Distribution and clearance of radioactive aerosol on the nasal mucosa. Rhinology. 1984;22(1):65–75.

    CAS  PubMed  Google Scholar 

  33. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective - a review. Drug Deliv Transl Res. 2013;3(1):42–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cu Y, Saltzman WM. Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev. 2009;61(2):101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gulliver JS. Introduction to chemical transport in the environment. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  36. Merck & Co. Nasonex Product Monograph. http://www.merck.ca/assets/en/pdf/products/NASONEX-PM_E.pdf.

  37. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet. 2007;22(4):225–54.

    Article  CAS  PubMed  Google Scholar 

  38. Schipper NGM, Verhoef JC, Merkus FWHM. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8(7):807–14.

    Article  CAS  PubMed  Google Scholar 

  39. Keyhani K, Scherer PW, Mozell MM. A numerical model of nasal odorant transport for the analysis of human olfaction. J Theor Biol. 1997;186(3):279–301.

    Article  CAS  PubMed  Google Scholar 

  40. Lawson M, Craven B, Paterson E, Settles G. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chem Senses. 2012;37(6):553–66.

    Article  CAS  PubMed  Google Scholar 

  41. U.S. Food and Drug Administration. Nasonex Product Information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/20762s11lbl.pdf.

  42. U.S. Pharmacopeia. Flunisolide Safety Data Sheet. http://www.usp.org/pdf/EN/referenceStandards/msds/1274505.pdf.

  43. Azimi M, Longest PW, Hindle M. Towards Clinically Relevant In Vitro Testing of Locally Acting Nasal Spray Suspension Products. Respiratory Drug Delivery Europe. 2015

  44. Gehr P, Schürch S, Berthiaume Y, HOF VI, Geiser M. Particle retention in airways by surfactant. J Aerosol Med. 1990;3(1):27–43.

    Article  Google Scholar 

  45. Gehr P, Green F, Geiser M, Hof VI, Lee M, Schürch S. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med. 1996;9(2):163–81.

    Article  CAS  PubMed  Google Scholar 

  46. Rygg A, Longest PW. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model. Journal of Aerosol Medicine and Pulmonary Drug Delivery. In review.

  47. Longest PW, Vinchurkar S, Martonen T. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci. 2006;37(10):1234–57.

    Article  CAS  Google Scholar 

  48. Balashazy I, Hofmann W, Heistracher T. Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J Aerosol Sci. 1999;30(2):185–203.

    Article  CAS  Google Scholar 

  49. Haghi M, Traini D, Young P. In vitro cell integrated impactor deposition methodology for the study of aerodynamically relevant size fractions from commercial pressurised metered dose inhalers. Pharm Res. 2014;31(7):1779–87.

    Article  CAS  PubMed  Google Scholar 

  50. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai SK, Suk JS, Pace A, Wang YY, Yang M, Mert O, et al. Drug Carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials. 2011;32(26):6285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ensign LM, Schneider C, Suk JS, Cone R, Hanes J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv Mater. 2012;24(28):3887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakagami M, Byron PR. Respirable Microspheres for inhalation. Clin Pharmacokinet. 2005;44(3):263–77.

    Article  CAS  PubMed  Google Scholar 

  54. Pereswetoff-Morath L. Microspheres as nasal drug delivery systems. Adv Drug Deliv Rev. 1998;29(1-2):185–94.

    Article  CAS  PubMed  Google Scholar 

  55. Illum L. Nasal clearance in health and disease. J Aerosol Med. 2006;19(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bond S, Hardy J, Wilson C, editors. Deposition and Clearance of Nasal Sprays. The 2nd International Congress of Biopharmaceutics and Pharmacokinetics; 1984; Salamanca.

  57. Rosen EJ, Calhoun KH. Alterations of nasal mucociliary clearance in association with HIV infection and the effect of Guaifenesin therapy. Laryngoscope. 2005;115(1):27–30.

    Article  PubMed  Google Scholar 

  58. Surico G, Muggeo P, Mappa L, Muggeo V, Conti V, Lucarelli A, et al. Impairment of nasal mucociliary clearance after radiotherapy for childhood head cancer. Head Neck. 2001;23(6):461–6.

    Article  CAS  PubMed  Google Scholar 

  59. Ho JC, Chan KN, Hu WH, Lam WK, Zheng L, Tipoe GL, et al. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med. 2001;163(4):983–8.

    Article  CAS  PubMed  Google Scholar 

  60. Illum L. Nasal drug delivery: New developments and strategies. Drug Discov Today. 2002;7(23):1184–9.

    Article  CAS  PubMed  Google Scholar 

  61. Patton JS, Brain JD, Davies La, Fiegel J, Gumbleton M, Kim K-J, et al. The Particle has Landed - Characterizing the Fate of Inhaled Pharmaceuticals. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2010;23, Supple:S71-S87.

  62. Al-Ghananeem AM, Sandefer EP, Doll WJ, Page RC, Chang Y, Digenis GA. Gamma Scintigraphy for testing bioequivalence: a case study on Two cromolyn sodium nasal spray preparations. Int J Pharm. 2008;357(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  63. Bur M, Huwer H, Muys L, Lehr C-M. Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J Aerosol Med Pulm Drug Deliv. 2010;23(3):119–27.

    Article  CAS  PubMed  Google Scholar 

  64. Henning A, Schneider M, Nafee N, Muijs L, Rytting E, Wang X, et al. Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv. 2010;23(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  65. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  66. Hanson LR, Frey WH. Intranasal Delivery Bypasses the Blood-Brain Barrier to Target Therapeutic Agents to the Central Nervous System and Treat Neurodegenerative Disease. BMC Neuroscience. 2008;9 Suppl 3:S5.

  67. Shanahan M. The spreading dynamics of a liquid drop on a viscoelastic solid. J Phys D Appl Phys. 1988;21(6):981.

    Article  CAS  Google Scholar 

  68. Jacqmin D. Contact-line dynamics of a diffuse fluid interface. J Fluid Mech. 2000;402:57–88.

    Article  CAS  Google Scholar 

  69. Dussan E. On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech. 1979;11(1):371–400.

    Article  Google Scholar 

  70. Affrime MB, Cuss F, Padhi D, Wirth M, Pai S, Clement RP, et al. Bioavailability and metabolism of mometasone furoate following administration by metered‐dose and Dry‐powder inhalers in healthy human volunteers. J Clin Pharmacol. 2000;40(11):1227–36.

    CAS  PubMed  Google Scholar 

  71. Daley-Yates P, Kunka R, Yin Y, Andrews S, Callejas S, Ng C. Bioavailability of fluticasone propionate and mometasone furoate aqueous nasal sprays. Eur J Clin Pharmacol. 2004;60(4):265–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Dr. Geng Tian is gratefully acknowledged for his part in developing the NMT and nasal spray pump model during his time as a postdoc at Virginia Commonwealth University and Mandana Azimi for her critical review of the manuscript. This study was supported by Award U01 FD004570 and Contract HHSF223201310223C from the US FDA. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rygg, A., Hindle, M. & Longest, P.W. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Effects of Nasal Spray Suspension Particle Size and Properties. Pharm Res 33, 909–921 (2016). https://doi.org/10.1007/s11095-015-1837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1837-5

KEY WORDS

Navigation