Skip to main content

Advertisement

Log in

Multi-functional Liposomes Enhancing Target and Antibacterial Immunity for Antimicrobial and Anti-Biofilm Against Methicillin-Resistant Staphylococcus aureus

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to prepare wheat germ agglutinin (WGA)-modified liposomes encapsulating clarithromycin and to evaluate their in vitro and in vivo efficacy against Methicillin-resistant Staphylococcus aureus (MRSA).

Methods

Physicochemical parameters, minimum inhibitory concentrations, in vitro killing kinetic, cellular uptake, biofilm formation inhibition and pre-formed biofilm destruction, biodistribution, in vivo antibacterial efficacy against MRSA, and phagocytosis into macrophages for liposomes loading clarithromycin were determined.

Results

The minimum inhibitory concentration and the time–kill curve for WGA-modified liposomal clarithromycin were better than those of free and nonmodified liposomal clarithromycin. Flow cytometry analysis displayed that liposomes could deliver more Coumarin 6, a fluorescent probe, into bacteria because of the conjugation of WGA. Besides, WGA-modified liposomal clarithromycin inhibited formation of S. aureus (ATCC 29213) and MRSA biofiom, and prompted the biofilm disassembly at lower concentrations below MIC. Effective accumulation of liposomes was displayed in the enterocoelia of the mice because of WGA. The number of MRSA colony-forming units in the kidney and spleen in mice treated with WGA-modified liposomal clarithromycin was significantly lower than that treated with free and nonmodified clarithromycin (p < 0.05). Intracellular localization of MRSA occurred in a significantly higher proportion of macrophage exposed to WGA-modified liposomes compared to those exposed to nonmodified liposomes.

Conclusions

Liposome modified by WGA is a promising formulation for bacteria targeted delivery and immunity defensive system through macrophage improving uptake of bacteria, biodistribution, in vitro and in vivo antibacterial efficacy against MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscope

DC-Chol:

Cholesteryl 3β-N-di-methyl-amino-ethyl-carbamate hydrochloride

DiR:

DiR iodide [1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide]

DMEM:

Dulbecco minimum essential medium

DSPE-PEG:

DSPE-PEG2000

Lip:

Clarithromycin loaded liposomes

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant staphylococcus aureus

NHS-PEG-DSPE:

N-hydroxysuccinimidyl-PEG2000-DSPE

PBS:

Phosphate-buffered saline

PDI:

Polydispersity index

PEG-Lip:

Nonmodified liposomes

S. aureus :

Staphylococcus aureus

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

Scanning Electron Microscopy

SPC:

Soy phosphatidylcholine

TSA:

Tryptic soy agar

TSB:

Tryptic soy broth

WGA:

Wheat germ agglutinin

WGA-Lip:

WGA-modified liposomes

References

  1. Walker B, Barrett S, Polasky S, Galaz V, Folke C, Engstrom G, et al. Environment. Looming global-scale failures and missing institutions. Science. 2009;325:1345–6.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RE. Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care. 2008;53:471–9.

    PubMed  Google Scholar 

  3. Taubes G. The bacteria fight back. Science. 2008;321:356–61.

    Article  CAS  PubMed  Google Scholar 

  4. Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol. 2007;118:15–9.

    Article  CAS  PubMed  Google Scholar 

  5. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Goldsteinand IJ, Hayes CE. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340.

    Article  Google Scholar 

  7. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54:761–6.

    Article  CAS  PubMed  Google Scholar 

  8. Avni I, Arffa RC, Robin JB, Rao NA. Lectins for the identification of ocular bacterial pathogens. Metab Pediatr Syst Ophthalmol (New York, NY : 1985). 1987;10:45–7.

    CAS  Google Scholar 

  9. Ellis MW, Hospenthal DR, Dooley DP, Gray PJ, Murray CK. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clin Infect Dis : Off Publ Infect Dis Soc Am. 2004;39:971–9.

    Article  Google Scholar 

  10. Ju RJ, Li XT, Shi JF, Li XY, Sun MG, Zeng F, et al. Liposomes, modified with PTD(HIV-1) peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer. Biomaterials. 2014;35:7610–21.

    Article  CAS  PubMed  Google Scholar 

  11. Yang K, Gitter B, Ruger R, Albrecht V, Wieland GD, Fahr A. Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria. Photochem Photobiol. 2012;88:548–56.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng L, Huang FZ, Cheng LF, Zhu YQ, Hu Q, Li L, et al. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomedicine. 2014;9:921–35.

    Article  PubMed Central  PubMed  Google Scholar 

  13. C.a.L.S. Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Wayne, PA, USA. pp. Ninth Edition: Approved Standard M07-A09.

  14. Sato T, Kawai Y, Matsuda H, Tateda K, Kimura S, Ishii Y, et al. In vitro and in vivo antibacterial activity of modithromycin against streptococci and Haemophilus influenzae. J Antimicrob Chemother. 2011;66:1547–54.

    Article  CAS  PubMed  Google Scholar 

  15. Zou Y, Lee Y, Huh J, Park JW. Synergistic effect of xylitol and ursolic acid combination on oral biofilms. Restor Dent Endod. 2014;39:288–95.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Weischenfeldtand J, Porse B. Bone Marrow-Derived Macrophages (BMM): isolation and applications. CSH Protocols. 2008;2008:pdb prot5080.

    Google Scholar 

  17. Gallily R, Douchan Z, Weiss DW. Potentiation of mouse peritoneal macrophage antibacterial functions by treatment of the donor animals with the methanol extraction residue fraction of tubercle bacilli. Infect Immun. 1977;18:405–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Lehr CM. Lectin-mediated drug delivery: the second generation of bioadhesives. J Controll Release : Off J Control Release Soc. 2000;65:19–29.

    Article  CAS  Google Scholar 

  19. Valizadeh H, Mohammadi G, Ehyaei R, Milani M, Azhdarzadeh M, Zakeri-Milani P, et al. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Die Pharmazie. 2012;67:63–8.

    CAS  PubMed  Google Scholar 

  20. Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 2013;57:2694–704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sanderson NM, Guo B, Jacob AE, Handley PS, Cunniffe JG, Jones MN. The interaction of cationic liposomes with the skin-associated bacterium Staphylococcus epidermidis: effects of ionic strength and temperature. Biochim Biophys Acta. 1996;1283:207–14.

    Article  PubMed  Google Scholar 

  22. Nagataand Y, Burger MM. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974;249:3116–22.

    Google Scholar 

  23. Van Bambeke F, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci. 2008;29:124–34.

    Article  PubMed  Google Scholar 

  24. Nishino T. An electron microscopic study of antagonism between cephalexin and erythromycin in Staphylococcus aureus. Jpn J Microbiol. 1975;19:53–63.

    Article  CAS  PubMed  Google Scholar 

  25. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2003;41:5–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, Gotz F, et al. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun. 2005;73:6868–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun. 2006;74:4849–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kolodkin-Gal I, Cao S, Chai L, Bottcher T, Kolter R, Clardy J, et al. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell. 2012;149:684–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Garg A, Tisdale AW, Haidari E, Kokkoli E. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm. 2009;366:201–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shen Y, Chen J, Liu Q, Feng C, Gao X, Wang L, et al. Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells. Int J Pharm. 2011;413:184–93.

    Article  CAS  PubMed  Google Scholar 

  31. Glavas-Dodov M, Steffansen B, Crcarevska MS, Geskovski N, Dimchevska S, Kuzmanovska S, et al. Wheat germ agglutinin-functionalised crosslinked polyelectrolyte microparticles for local colon delivery of 5-FU: in vitro efficacy and in vivo gastrointestinal distribution. J Microencapsul. 2013;30:643–56.

    Article  CAS  PubMed  Google Scholar 

  32. Wang C, Ho PC, Lim LY. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm. 2010;400:201–10.

    Article  CAS  PubMed  Google Scholar 

  33. Kesherwaniand V, Sodhi A. Differential activation of macrophages in vitro by lectin Concanavalin A, Phytohemagglutinin and Wheat germ agglutinin: production and regulation of nitric oxide. Nitric oxide : Biol Chem / Off J Nitric Oxide Soc. 2007;16:294–305.

    Article  Google Scholar 

  34. Lotanand RM, Barzilai D. Effect of wheat germ agglutinin and concanavalin A on insulin binding and response by Madin-Darby canine kidney cells. Isr J Med Sci. 1990;26:5–11.

    Google Scholar 

  35. Rieger AM, Hall BE, Barreda DR. Macrophage activation differentially modulates particle binding, phagocytosis and downstream antimicrobial mechanisms. Dev Comp Immunol. 2010;34:1144–59.

    Article  CAS  PubMed  Google Scholar 

  36. Greenberg S, el Khoury J, di Virgilio F, Kaplan EM, Silverstein SC. Ca(2+)-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J Cell Biol. 1991;113:757–67.

    Article  CAS  PubMed  Google Scholar 

  37. Aderemand A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  Google Scholar 

  38. Corradin SB, Buchmuller-Rouiller Y, Mauel J. Phagocytosis enhances murine macrophage activation by interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol. 1991;21:2553–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Natural Science Foundation of China (No. 81202488).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiling Li or Xinru Li.

Additional information

Yansha Meng and Xucheng Hou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Hou, X., Lei, J. et al. Multi-functional Liposomes Enhancing Target and Antibacterial Immunity for Antimicrobial and Anti-Biofilm Against Methicillin-Resistant Staphylococcus aureus . Pharm Res 33, 763–775 (2016). https://doi.org/10.1007/s11095-015-1825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1825-9

KEY WORDS

Navigation