Skip to main content
Log in

The Bactericidal and Antibiofilm Effects of New Liposomes Containing Vancomycin Formulation Against Clinical Biofilm Positive Staphylococcus aureus Isolates

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The aim of present study was to prepare liposomes containing vancomycin (Lipo-VAN) formulation, and to evaluate the anti-biofilm effect of Lipo-VAN on the expression of icaA genes in clinical strains of Staphylococcus aureus. Lipo-VAN was synthesized using thin-layer hydration method. Formulation no. 3 (F3) with the lowest size of 178.1 nm and polydispersity index value of 0.163 and with the highest efficiency for entrapping drug (65.49%) was selected as an optimal formulation. The formulations were tested for bactericidal and antibiofilm effects against S. aureus strains. The MIC and MBC obtained for the Lipo-VAN against clinical strains were 7.81–62.5 and 15.62–125 µg/mL, respectively. In addition, the reduction in biofilm formation in strains treated with Lipo-VAN was more significant rather than in the VAN-treated and control groups, which was demonstrated with down-regulation of icaA gene expression. Lipo-VAN formulation exhibited elevated antimicrobial and anti-biofilm activity against clinical S. aureus strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Falagas, M.E., Karageorgopoulos, D.E., Leptidis, J. and Korbila, I. P., PLoS One, 2013, vol. 8, no. 7, p. e68024.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bonesso, M.F., Yeh, A.J., Villaruz, A.E., Joo, H.-S. McCausland, J., Fortaleza, C.M., et al., Am. J. Respir. Crit. Care Med., 2016, vol. 193, no. 2, pp. 217–220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cheung, G.Y., Bae, J.S., and Otto, M., Virulence, 2021, vol. 12, no. 1, pp. 547–569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Oogai, Y., Matsuo, M., Hashimoto, M., Kato, F., Sugai, M., and Komatsuzawa, H., Appl. Environ. Microbiol., 2011, vol. 77, no. 22, pp. 8097–8105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kaplan, J.B., Mlynek, K.D., Hettiarachchi, H., Alamneh, Y.A., Biggemann, L., Zurawski, D.V., et al., PLoS One, 2018, vol. 13, no. 10, p. e0205526.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sauer, K., Genome Biol., 2003, vol. 4, no. 6, pp. 1–5.

    Article  Google Scholar 

  7. Arciola, C.R., Baldassarri, L., and Montanaro, L., J. Clin. Microbiol., 2001, vol. 39, no. 6, pp. 2151–2156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Now, M.M. and Common, B., Clevel. Clin. J. Med., 2012, vol. 79, no. 1, p. 57.

    Article  Google Scholar 

  9. Boswihi, S.S. and Udo, E.E., Cur. Med. Res. Pract., 2018, vol. 8, no. 1, pp. 18–24.

    Article  Google Scholar 

  10. Bruniera, F., Ferreira, F., Saviolli, L., Bacci, M., Feder, D., da Luz Gonçalves, et al., Eur. Rev. Med. Pharmacol. Sci., 2015, vol. 19, no. 4, pp. 694–700.

    PubMed  CAS  Google Scholar 

  11. Hajiahmadi, F., Alikhani, M.Y., Shariatifar, H., Arabestani, M.R., and Ahmadvand, D., Med. J. Islam. Repub. Iran, 2019, vol. 33, p. 153.

    PubMed  PubMed Central  Google Scholar 

  12. Drulis-Kawa, Z. and Dorotkiewicz-Jach, A., Int. J. Pharm., 2010, vol. 387, no. 1–2, pp. 187–198.

    Article  PubMed  CAS  Google Scholar 

  13. Huh, A.J. and Kwon, Y.J., J. Controlled Release, 2011, vol. 156, no. 2, pp. 128–145.

    Article  CAS  Google Scholar 

  14. Alipour, M., Halwani, M., Omri, A., and Suntres, Z.E., Int. J. Pharm., 2008, vol. 355, nos. 1–2, pp. 293–298.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, J., Wang, Z., Li, F., Gao, J., Wang, L., and Huang, G., Asian J. Pharm. Sci., 2015, vol. 10, no. 3, pp. 212–222.

    Google Scholar 

  16. Panwar, P., Pandey, B., Lakhera, P., and Singh, K., Int. J. Nanomed., 2010, vol. 5, p. 101.

    CAS  Google Scholar 

  17. Miao, Z.L., Deng, Y. J., Du, H.Y., Suo, X. B., Wang, X.Y., Wang, X., et al., Exp. Ther. Med., 2015, vol. 9, no. 3, pp. 941–946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Barakat, H.S., Kassem, M.A., El-Khordagui, L.K., and Khalafallah, N.M., AAPS Pharm. Sci. Technol., 2014, vol. 15, no. 5, pp. 1263–1274.

    Article  CAS  Google Scholar 

  19. Stepanović, S., Vuković, D., Dakić, I., Savić, B., and Švabić-Vlahović, M., J. Microbiol. Methods, 2000, vol. 40, no. 2, pp. 175–179.

    Article  PubMed  Google Scholar 

  20. Cafiso, V., Bertuccio, T., Santagati, M., Campanile, F., Amicosante, G., Perilli, M., et al., Clin. Microbiol. Infect., 2004, vol. 10, no. 12, pp. 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  21. Bian, Y., Gao, D., Liu, Y., Li, N., Zhang, X., Zheng, R.Y.; et al., RSC Adv., 2015, vol. 5, no. 24, pp. 18725–18732.

    Article  CAS  Google Scholar 

  22. Yalcin, T.E., Ilbasmis–Tamer, S., Ibisoglu, B., Özdemir, A., Ark, M., and Takka, S., Pharm. Dev. Technol., 2018, vol. 23, no. 1, pp. 76–86.

    Article  PubMed  CAS  Google Scholar 

  23. Ta, T. and Porter, T.M., J. Control Release 2013, vol. 169, nos. 1–2, pp. 112–125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hua, S., Int. J.Nanomed., 2014, vol. 9, p. 735.

    Article  Google Scholar 

  25. Bhattacharyya, S., Sudheer, P., Das, K., and Ray, S., Adv. Pharm. Bull., 2021, vol. 11, no. 4, p. 651.

    Article  PubMed  CAS  Google Scholar 

  26. Cong, Y., Yang, S., and Rao, X., J. Adv. Res., 2020, vol. 21, pp. 169–176.

    Article  PubMed  Google Scholar 

  27. Ferreira, M., Ogren, M., Dias, J.N., Silva, M., Gil, S.,Tavares, L., et al., Molecules, 2021, vol. 26, no. 7, p. 2047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sande, L., Sanchez, M., Montes, J., Wolf, A.J., Morgan, M.A., Omri, A., et al., J. Antimicrob. Chemother., 2012, vol. 67, no. 9, pp. 2191–2194.

    Article  PubMed  CAS  Google Scholar 

  29. Vishwasrao, K., Surti, A., and Radha, S., arXiv preprint arXiv:1801.04824, 2018.

  30. Scriboni, A.B., Couto, V.M., Ribeiro, L.N.M., Freires, I.A. Groppo, F.C., De Paula, E. et al., Front. Pharmacol., 2019, vol. 10, p. 1401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ashrafi.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, M., Ashrafi, F. The Bactericidal and Antibiofilm Effects of New Liposomes Containing Vancomycin Formulation Against Clinical Biofilm Positive Staphylococcus aureus Isolates. Appl Biochem Microbiol 59, 824–832 (2023). https://doi.org/10.1134/S0003683823060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060157

Keywords:

Navigation