Skip to main content
Log in

Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more.

Methods

We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures.

Results

These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5.

Conclusions

The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Certain commercial equipment, instruments, or materials are identified in this document. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the products identified are necessarily the best available for the purpose.

Abbreviations

a 1a 4 :

Parameters in Eq. 10

A p :

Projected area of a particle

b :

Feret diameter

b max :

Maximum Feret diameter of a particle consistent with constructive interference of light scattering

c :

Measured diameter minus actual diameter of silica beads

C d :

Correction factor for refractive index related to particle diameter, Eq. 3

C sca :

Scattering cross section

C w/t :

Correction factor for refractive index related to particle width-to-thickness ratio, Eq. 3

d :

Diameter

d act :

Actual diameter

d c :

Cut-off diameter, above which Q is obtained by a scaling relation

d meas :

Measured diameter

d trans :

Transformed diameter

F :

Fraction of pixels with largest absolute magnitude of ϕ

G :

Parameter to assess validity of RGD theory, G = 2kl(m – 1)

k :

Wavenumber, equal to 2π/l

l :

Largest characteristic length of a particle

m :

Reduced refractive index, equal to the ratio of the refractive index to the refractive index of the matrix liquid

n p :

Average refractive index of a particle immersed in a matrix liquid

n l :

refractive index of the matrix liquid

N(d):

Cumulative particle size distribution, equal to the number of particles per unit volume of equivalent diameter d or larger

Q :

Extinction efficiency factor

Q PSL :

Extinction efficiency factor for polystyrene latex beads

Q’:

Modified extinction efficiency factor equal to the total scattering beyond the aperture angle, divided by the average projected area of a randomly oriented spheroid.

r ij :

Distance between spheres i and j

R N :

Ratio of the maximum and minimum values of N(d)

x,y :

Orthogonal distances perpendicular to the optical axis

t :

Particle thickness of a gravitationally settled particle

w :

Particle width, equal to the minimum Feret diameter, of a gravitationally settled particle

z :

Distance along the optical axis

z p :

Thickness of a particle in the z direction

α :

Minimum angle for light to be scattered out of a light-obscuration detector

Δn :

Refractive index of a particle minus the refractive index of the matrix fluid

η :

Aspect ratio of minor to major axis.

θ :

Scattering angle

λ 0 :

Wavelength in vacuum

λ :

Wavelength in the matrix fluid

ϕ :

Optical phase thickness

ETFE:

Ethylene tetrafluoroethylene

FI:

Flow imaging

HEPES:

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

HSA:

Human serum albumin

IgG:

Immunoglobulin G

LO:

Light obscuration

PFA:

Perfluorinated alkoxy

PMMA:

Poly(methyl methacrylate)

PSL:

Polystyrene latex

PVDF:

Polyvinylidene fluoride

QPI:

Quantitative phase imaging

RGD:

Rayleigh-Gans-Debye

SDS:

Sodium dodecyl sulfate

References

  1. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–507.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rosenberg AS, Verthelyi D, Cherney BW. Managing uncertainty: a perspective on risk pertaining to product quality attributes as they bear on immunogenicity of therapeutic proteins. J Pharm Sci. 2012;101(10):3560–7.

    Article  CAS  PubMed  Google Scholar 

  4. Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. mAbs. 2012;4(6):740–52.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bi V, Jawa V, Joubert MK, Kaliyaperumal A, Eakin C, Richmond K, et al. Development of a human antibody tolerant mouse model to assess the immunogenicity risk due to aggregated biotherapeutics. J Pharm Sci. 2013;102(10):3545–55.

    Article  CAS  PubMed  Google Scholar 

  6. USP/NF Monograph <787>. Subvisible particulate matterin in therapeutic protein injections. In. Rockville, MD: United States Pharmacopeial Convention; 2014.

  7. USP/NF Monograph <788>. Particulate matter in injections. In. Rockville, MD: United States Pharmacopeial Convention; 2014.

  8. Sharma DK, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 2010;12(3):455–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35.

    Article  PubMed  Google Scholar 

  10. Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, et al. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2012;29(2):594–602.

    Article  CAS  PubMed  Google Scholar 

  11. Vandesteeg N, Kilbert C. Differentiation of subvisible silicone oil droplets from irregular standard dust particles. J Pharm Sci. 2013;102(6):1696–700.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma DK, Oma P, Pollo MJ, Sukumar M. Quantification and characterization of subvisible proteinaceous particles in opalescent mAb formulations using micro-flow imaging. J Pharm Sci. 2010;99(6):2628–42.

    Article  CAS  PubMed  Google Scholar 

  13. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  PubMed  Google Scholar 

  14. Huang CT, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–71.

    Article  CAS  PubMed  Google Scholar 

  15. Zolls S, Gregoritza M, Tantipolphan R, Wiggenhorn M, Winter G, Friess W, et al. How subvisible particles become invisible-relevance of the refractive index for protein particle analysis. J Pharm Sci. 2013;102(5):1434–46.

    Article  PubMed  Google Scholar 

  16. Barnard JG, Rhyner MN, Carpenter JF. Critical evaluation and guidance for using the Coulter method for counting subvisible particles in protein solutions. J Pharm Sci. 2012;101(1):140–53.

    Article  CAS  PubMed  Google Scholar 

  17. Werk T, Volkin DB, Mahler HC. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods. Eur J Pharm Sci. 2014;53:95–108.

    Article  CAS  PubMed  Google Scholar 

  18. Knollenberg RG, Gallant RC. Refractive index effects on particle size measurements in liquid media by optical extinction. In. International Conference on Particle Detection; 1990. p. 154–182.

  19. Ripple DC, Dimitrova MN. Protein particles: what we know and what we do not know. J Pharm Sci. 2012;101(10):3568–79.

    Article  CAS  PubMed  Google Scholar 

  20. Ripple DC, Montgomery CB, Hu Z. An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates. J Pharm Sci. 2015;104:666–77.

    Article  CAS  PubMed  Google Scholar 

  21. French RH, Rodriguez-Parada JM, Yang MK, Derryberry RA, Lemon MF, Brown MJ, Haeger CR, Samuels SL, Romano EC, Richardson RE. Optical properties of materials for concentrator photovoltaic systems. Ieee Phot Spec Conf. 2009:149–154.

  22. Voros J. The density and refractive index of adsorbing protein layers. Biophys J. 2004;87(1):553–61.

    Article  PubMed Central  PubMed  Google Scholar 

  23. DuPont(tm) Tefzel(R) fluoropolymer resin, properties handbook. 2015 February 10. Available from: http://www2.dupont.com/KIV/zh_CN/assets/downloads/h96518.pdf.

  24. Totoki S, Yamamoto G, Tsumoto K, Uchiyama S, Fukui K. Quantitative laser diffraction method for the assessment of protein subvisible particles. J Pharm Sci. 2015;104(2):618–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mir M, Bhaduri B, Wang R, Zhu RY, Popescu G. Quantitative phase imaging. Prog Opt. 2012;57:133–217.

    Article  Google Scholar 

  26. Teague MR. Deterministic phase retrieval - a green-function solution. J Opt Soc Am. 1983;73(11):1434–41.

    Article  Google Scholar 

  27. Paganin D, Nugent KA. Noninterferometric phase imaging with partially coherent light. Phys Rev Lett. 1998;80(12):2586–9.

    Article  CAS  Google Scholar 

  28. Bellair CJ, Curl CL, Allman BE, Harris PJ, Roberts A, Delbridge LM, et al. Quantitative phase amplitude microscopy IV: imaging thick specimens. J Microsc. 2004;214(Pt 1):62–9.

    Article  CAS  PubMed  Google Scholar 

  29. Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. 2015 February 10. Available from: http://imagej.nih.gov/ij/.

  30. Frank J, Matrisch J, Horstmann J, Altmeyer S, Wernicke G. Refractive index determination of transparent samples by noniterative phase retrieval. Appl Opt. 2011;50(4):427–33.

    Article  PubMed  Google Scholar 

  31. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced methods of microscope control using μManager software. J Biol Methods. 2014;1(2), e11.

    Article  Google Scholar 

  32. Cao S, Jiang Y, Narhi L. A light-obscuration method for quantifying subvisible particles in protein therapeutics. Pharm Forum. 2010;36(3):824–34.

    Google Scholar 

  33. Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Opt. 2007;46(18):3811–20.

    Article  PubMed  Google Scholar 

  34. Kasarova SN, Sultanova NG, Ivanov CD, Nikolov ID. Analysis of the dispersion of optical plastic materials. Opt Mater. 2007;29(11):1481–90.

    Article  CAS  Google Scholar 

  35. Asano S, Yamamoto G. Light scattering by a spheroidal particle. Appl Opt. 1975;14(1):29–49.

    Article  CAS  PubMed  Google Scholar 

  36. Chen TW. Effective sphere for spheroid in light-scattering. Opt Commun. 1995;114(3–4):199–202.

    Article  CAS  Google Scholar 

  37. Bohren CF, Huffman DR. Absorption and scattering of light by small particles: Wiley Science; 1998.

  38. MiePlot, vers. 4.3.05. 2015 February 10. Available from: http://www.philiplaven.com/mieplot.htm.

  39. Barber PW, Wang DS. Rayleigh-Gans-Debye applicability to scattering by nonspherical particles. Appl Opt. 1978;17(5):797–803.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Ma L. Applicable range of the Rayleigh-Debye-Gans theory for calculating the scattering matrix of soot aggregates. Appl Opt. 2009;48(3):591–7.

    Article  PubMed  Google Scholar 

  41. Sorensen CM. Light scattering by fractal aggregates: a review. Aerosol Sci Technol. 2001;35(2):648–87.

    Article  CAS  Google Scholar 

  42. Van de Hulst HC. Light scattering by small particles. New York: Wiley; 1957.

    Google Scholar 

  43. Olaofe GO. Scattering by 2 Rayleigh-Debye Spheres. Appl Opt. 1970;9(2):429–38.

    Article  Google Scholar 

  44. Hu Z, Ripple DC. The use of index-matched beads in optical particle counters. J Res Natl Inst Stand Technol. 2014;119:674–82.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cavicchi RE, Carrier MJ, Cohen JB, Boger S, Montgomery CB, Hu Z, et al. Particle shape effects on subvisible particle sizing measurements. J Pharm Sci. 2015;104(3):971–87.

    Article  CAS  PubMed  Google Scholar 

  46. Bon P, Maucort G, Wattellier B, Monneret S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express. 2009;17:13080–94.

    Article  CAS  PubMed  Google Scholar 

  47. Kalonia C, Kumru OS, Prajapati I, Mathaes R, Engert J, Zhou S, et al. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data. J Pharm Sci. 2015;104(2):536–47.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Wyatt Vreeland of the National Institute of Standards and Technology for helpful comments, Robert Fletcher of the National Institute of Standards and Technology for assistance with aperture measurements, and Nathan Vandesteeg of Baxter Healthcare for further details of his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean C. Ripple.

Additional information

This paper is a contribution of the United States government and is not subject to copyright

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripple, D.C., Hu, Z. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters. Pharm Res 33, 653–672 (2016). https://doi.org/10.1007/s11095-015-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1817-9

KEY WORDS

Navigation