Skip to main content

Advertisement

Log in

Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anticancer drugs have poor water solubility leading to low bioavailability.

Methods

Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice.

Results

In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models.

Conclusion

Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal Growth Factor Receptor

Gef:

Gefitinib

Gef-SD:

Gefitinib Spray Dried Formulation

HPβ-CD:

Hydroxy Propyl Beta- Cyclodextrin

References

  1. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and prelimi nary clinical results. Invest New Drug. 1999;17(3):259–69.

    Article  CAS  Google Scholar 

  2. Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, et al. Targeting the EGFR pathway for cancer therapy. Curr Med Chem. 2006;13(29):3483–92.

    Article  PubMed  CAS  Google Scholar 

  3. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62(20):5749–54.

    PubMed  CAS  Google Scholar 

  4. Hara F, Aoe M, Doihara H, Taira N, Shien T, Takahashi H, et al. Antitumor effect of gefitinib (‘Iressa’) on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Lett. 2005;226(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  5. Penne K, Bohlin C, Schneider S, Allen D. Gefitinib (Iressa (TM), ZD1839) and tyrosine kinase inhibitors - The wave of the future in cancer therapy. Cancer Nurs. 2005;28(6):481–6.

    Article  PubMed  Google Scholar 

  6. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther. 1999;82(2–3):241–50.

    Article  PubMed  CAS  Google Scholar 

  7. Herbst RS, Fukuoka M, Baselga J. Timeline - Gefitinib - a novel targeted approach to treating cancer. Nat Rev Cancer. 2004;4(12):956–65.

    Article  PubMed  CAS  Google Scholar 

  8. Djerf EA, Trinks C, Abdiu A, Thunell LK, Hallbeck AL, Walz TM. ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res. 2009;19(3):156–66.

    Article  PubMed  CAS  Google Scholar 

  9. Chougule MB, Patel AR, Patlolla R, Jackson T, Singh M. Epithelial transport of Noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target. 2014;22(6):498–508.

    Article  PubMed  CAS  Google Scholar 

  10. Patel AR, Chougule MB, Townley I, Patlolla R, Wang G, Singh M. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharm Res. 2013;30(5):1435–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chougule MB, Patel A, Sachdeva P, Jackson T, Singh M. Enhanced anticancer activity of gemcitabine in combination with noscapine via antiangiogenic and apoptotic pathway against non-small cell lung cancer. PLoS One. 2011;6(11), e27394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Patel AR, Chougule MB, Lim E, Francis KP, Safe S, Singh M. Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomed Nanotechnol Biol Med. 2014;10(5):1053–63.

    Article  CAS  Google Scholar 

  13. Patel AR, Chougule M, Singh M. EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res. 2014;31(10):2796–809.

    Article  PubMed  CAS  Google Scholar 

  14. Patel AR, Doddapaneni R, Andey T, Wilson H, Safe S, Singh M. Evaluation of Self-emulsified DIM-14 in dogs for oral bioavailability and in Nu/nu mice bearing stem cell lung tumor models for anticancer activity. J Control Release. 2015;213:18–26.

    Article  PubMed  CAS  Google Scholar 

  15. Andey T, Sudhakar G, Marepally S, Patel A, Banerjee R, Singh M. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Mol Pharm. 2015;12(4):1105–20.

    Article  PubMed  CAS  Google Scholar 

  16. Patel AR, Godugu C, Wilson H, Safe S, Singh M. Evaluation of spray BIO-Max DIM-P in dogs for oral bioavailability and in nu/nu mice bearing orthotopic/metastatic lung tumor models for anticancer activity. Pharm Res 1–9.

  17. Trummer BJ, Iyer V, Balu-Iyer SV, O’Connor R, Straubinger RM. Physicochemical properties of epidermal growth factor receptor inhibitors and development of a nanoliposomal formulation of gefitinib. J Pharm Sci-Us. 2012;101(8):2763–76.

    Article  CAS  Google Scholar 

  18. Lee YHP, Sathigari S, Lin YJJ, Ravis WR, Chadha G, Parsons DL, et al. Gefitinib-cyclodextrin inclusion complexes: physico-chemical characterization and dissolution studies. Drug Dev Ind Pharm. 2009;35(9):1113–20.

    Article  CAS  Google Scholar 

  19. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  PubMed  CAS  Google Scholar 

  20. Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release. 2012;161(3):735–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release. 2012;158(2):336–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Desai PR, Shah PP, Patlolla RR, Singh M. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application. Pharm Res-Dordr. 2012;29(9):2587–600.

    Article  CAS  Google Scholar 

  24. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res-Dordr. 2008;25(5):999–1022.

    Article  CAS  Google Scholar 

  25. Bowey K, Neufeld RJ. Systemic and mucosal delivery of drugs within polymeric microparticles produced by spray drying. BioDrugs. 2010;24(6):359–77.

    Article  PubMed  CAS  Google Scholar 

  26. Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci. 2010;99(2):587–97.

    PubMed  CAS  Google Scholar 

  27. Nekkanti V, Karatgi P, Prabhu R, Pillai R. Solid self-microemulsifying formulation for candesartan cilexetil. Aaps Pharmscitech. 2010;11(1):9–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Desai PR, Shah PP, Hayden P, Singh M. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles. Pharm Res-Dordr. 2013;30(4):1037–49.

    Article  CAS  Google Scholar 

  29. Boakye CHA, Doddapaneni R, Shah PP, Patel AR, Godugu C, Safe S, et al. Chemoprevention of skin cancer with 1,1-Bis (3 ′-Indolyl)-1-(Aromatic) methane analog through induction of the orphan nuclear receptor, NR4A2 (Nurr1). Plos One. 2013 8(8).

  30. Andey TA, Marepally S, Singh P, Singh M. Knockdown of annexin A2 by liposomal formulation of annexin A2 small hairpin RNA induces apoptosis and inhibits angiogenesis in lung cancer stem cells. Cancer Res. 2013;73(8):3738.

    Article  Google Scholar 

  31. Andey T, Patel A, Jackson T, Safe S, Singh M. 1, 1-Bis (3′-indolyl)-1-(p-substitutedphenyl) methane compounds inhibit lung cancer cell and tumor growth in a metastasis model. Eur J Pharm Sci. 2013;50(2):227–41.

    Article  PubMed  CAS  Google Scholar 

  32. Andey T, Marepally S, Patel A, Jackson T, Sarkar S, O’Connell M, et al. Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model. J Control Release. 2014;184(2):67–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Godugu C, Patel AR, Doddapaneni R, Somagoni J, Singh M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One. 2014;9(3), e89919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Faivre L, Gomo C, Mir O, Taieb F, Schoemann-Thomas A, Ropert S, et al. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:2345–50.

    Article  CAS  Google Scholar 

  35. Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M. Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release. 2013;172(1):86–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.

    Article  PubMed  CAS  Google Scholar 

  37. Jablan J, Szalontai G, Jug M. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. J Pharm Biomed. 2012;71:35–44.

    Article  CAS  Google Scholar 

  38. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed. 2014;96:10–20.

    Article  CAS  Google Scholar 

  39. Shelma R, Sharma CP. In vitro cell culture evaluation and in vivo efficacy of amphiphilic chitosan for oral insulin delivery. J Biomed Nanotechnol. 2013;9(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  40. Knight LA, Di Nicolantonio F, Whitehouse P, Mercer S, Sharma S, Glaysher S, et al. The in vitro effect of gefitinib (‘Iressa’) alone and in combination with cytotoxic chemotherapy on human solid tumours. BMC Cancer. 2004;4:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol. 2002;20:2240–50.

    Article  PubMed  CAS  Google Scholar 

  42. Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C, et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 2005;102:3788–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kaur J, Tikoo K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. Bioch et Biophy Acta. 1833;2013:1028–40.

    Google Scholar 

  44. Ishimaru D, Zuraw L, Ramalingam S, Sengupta TK, Bandyopadhyay S, Reuben A, et al. Mechanism of regulation of bcl-2 mRNA by nucleolin and A + U-rich element-binding factor 1 (AUF1). J Biol Chem. 2010;285:27182–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang LP, Bi J, Yao C, Xu XD, Li XX, Wang SM, et al. Annexin A1 expression and its prognostic significance in human breast cancer. Neoplasma. 2010;57:253–9.

    Article  PubMed  CAS  Google Scholar 

  46. Goncalves A, Finetti P, Sabatier R, Gilabert M, Adelaide J, Borg JP, et al. Poly(ADP-ribose) polymerase-1 mRNA expression in human breast cancer: a meta-analysis. Breast Cancer Res Treat. 2011;127:273–81.

    Article  PubMed  CAS  Google Scholar 

  47. Yamanaka M, Kimura F, Kagata Y, Kondoh N, Asano T, Yamamoto M, et al. BIGH3 is overexpressed in clear cell renal cell carcinoma. Oncol Rep. 2008;19:865–74.

    PubMed  CAS  Google Scholar 

  48. Lee TH, Pastorino L, Lu KP. Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Exp Rev Mol Med. 2011;13, e21.

    Article  CAS  Google Scholar 

  49. Jiang X, Yue J, Lu H, Campbell N, Yang Q, Lan S, et al. Inhibition of filamin-A reduces cancer metastatic potential. Int J Biol Sci. 2013;9:67–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Goplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res. 2006;66:9895–902.

    Article  PubMed  CAS  Google Scholar 

  51. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer. 2007;7:429–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hwang YJ, Lee SP, Kim SY, Choi YH, Kim MJ, Lee CH, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J. 2009;50:399–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Willis ND, Cox TR, Rahman-Casans SF, Smits K, Przyborski SA, van den Brandt P, et al. Lamin A/C is a risk biomarker in colorectal cancer. PLoS One. 2008;3, e2988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Karlenius TC, Tonissen KF. Thioredoxin and cancer: a role for thioredoxin in all states of tumor oxygenation. Cancers. 2010;2:209–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Misra A, Pandey C, Sze SK, Thanabalu T. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT). PLoS One. 2012;7, e49766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhao H, Lo YH, Ma L, Waltz SE, Gray JK, Hung MC, et al. Targeting tyrosine phosphorylation of PCNA inhibits prostate cancer growth. Mol Cancer Ther. 2011;10:29–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G, et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 2013;73:1721–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sawabu T, Seno H, Kawashima T, Fukuda A, Uenoyama Y, Kawada M, et al. Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog. 2007;46:155–64.

    Article  PubMed  CAS  Google Scholar 

  59. Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics. 2012;75:1803–15.

    Article  PubMed  CAS  Google Scholar 

  60. Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T, et al. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cel Biol. 2004;24:3992–4003.

    Article  CAS  Google Scholar 

  61. Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006;66:3197–204.

    Article  PubMed  CAS  Google Scholar 

  62. Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013;1:8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goldberg MS, Sharp PA. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012;209:217–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P, et al. Targeting lactate dehydrogenase--a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 2014;19:795–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yu H, Xin Y. Down-regulated expressions of PPARgamma and its coactivator PGC-1 are related to gastric carcinogenesis and Lauren’s classification in gastric carcinoma. Chin J Cancer Res. 2013;25:704–14.

    PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Ba Y, Liu C, Sun G, Ding L, Gao S, et al. PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway. Cell Res. 2007;17:363–73.

    Article  PubMed  CAS  Google Scholar 

  67. Yang L, Chen Y, Cui T, Knosel T, Zhang Q, Albring KF, et al. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/beta-catenin signaling pathway in human lung cancer. Carcinogenesis. 2012;33:1863–70.

    Article  PubMed  CAS  Google Scholar 

  68. Anand S, Honari G, Hasan T, Elson P, Maytin EV. Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo. Clin Cancer Res. 2009;15:3333–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhu B, Lu L, Cai W, Yang X, Li C, Yang Z, et al. Kallikrein-binding protein inhibits growth of gastric carcinoma by reducing vascular endothelial growth factor production and angiogenesis. Mol Cancer Ther. 2007;6:3297–306.

    Article  PubMed  CAS  Google Scholar 

  70. Kao WT, Lin CY, Lee LT, Lee PP, Hung CC, Lin YS, et al. Investigation of MMP-2 and -9 in a highly invasive A431 tumor cell sub-line selected from a Boyden chamber assay. Anticancer Res. 2008;28:2109–20.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge the financial assistance of this research from the National Institute on Minority Health and Health Disparities (NIMHD) P20 program [Grant # 1P20MD006738-03; to M.S.]; and the Department of Defense (DOD) Breast Cancer Program [Grant # W81XWH-11-1-0211 to M.S] and the National Institutes of Health (NIH) SC-1 grant [Grant # 5SC1CA161676-03 to M.S]. The authors thanks for the support of Dr. Ramesh Katam, Assistant professor, FAMU for proteomic analysis and Dr. Jaganmohan Somagoni, Research associate, FAMU for pharmacokinetic experiments during this study. Chandraiah Godugu, Ravi Doddapaneni and Mandip Singh contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godugu, C., Doddapaneni, R., Patel, A.R. et al. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma. Pharm Res 33, 137–154 (2016). https://doi.org/10.1007/s11095-015-1771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1771-6

KEY WORDS

Navigation