Skip to main content

Advertisement

Log in

Cell Penetrating Peptides as Efficient Nanocarriers for Delivery of Antifungal Compound, Natamycin for the Treatment of Fungal Keratitis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Enhancing the penetration ability of the antifungal drug natamycin, known to possess poor penetration ability through the corneal epithelium, by complexing with cell penetrating peptides.

Methods

The drug, natamycin was conjugated to a cell penetrating peptide, Tat-dimer (Tat2). The uptake ability of the conjugate in human corneal epithelial cells and its antifungal activity against filamentous fungi, F.solani has been elucidated.

Results

The cellular penetration ability of natamycin increased upon conjugation with Tat2. The conjugation between natamycin and Tat2 also lead to enhanced solubility of the drug in aqueous medium. The antifungal activity of the conjugate increased two- folds in comparison to unconjugated natamycin against clinical isolates of F.solani.

Conclusion

The formation of CPP-natamycin complex is clinically significant as it may enhance the bioavailability of natamycin in corneal tissues and aid in efficient management of fungal keratitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CPP:

Cell penetrating peptide

FDA:

Food and drug administration

FITC:

Fluorescein isothiocyanate

IV:

Intravenous

MIC:

Minimum inhibitory concentration

References

  1. Thomas PA. Fungal infections of the cornea. Eye. 2003;17(8):852–62.

    Article  CAS  PubMed  Google Scholar 

  2. Thomas PA, Kaliamurthy J. Mycotic Keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect. 2013;19(3):210–20.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Badriyeh D, Neoh CF, Stewart K, Kong DC. Clinical utility of voriconazole eye drops in ophthalmic fungal keratitis. Clin Ophthalmol. 2010;4:391–405.

    PubMed Central  PubMed  Google Scholar 

  4. Leck AK, Thomas PA, Hagan M, Kaliamurthy J, Ackuaku E, John M, et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br J Ophthalmol. 2002;86(11):1211–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao GN. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care center in South India. Cornea. 2002;21(6):555–9.

    Article  PubMed  Google Scholar 

  6. Gopinathan U, Sharma S, Garg P, Rao GN. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J Ophthalmol. 2009;57(4):273–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Whitcher JP, Srinivasan M, Upadhyay P. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79(3):214–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lalitha P, Sun CQ, Prajna NV, Karpagam R, Geetha M, O’Brien KS, et al. In vitro susceptibility of filamentous fungal isolates from a corneal ulcer clinical trial. Am J Ophthalmol. 2014;157(2):318–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Burton MJ, Pithuwa J, Okello E, Afwamba I, Onyango JJ, Oates F, et al. Microbial Keratitis in East Africa: why are the outcomes so poor? Ophthalmic Epidemiol. 2011;18(4):158–63.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Keay LJ, Gower EW, Lovieno A, Oechsler RA, Alfonso EC, Matoba A, et al. Clinical and microbiological characteristics of Fungal Keratitis in the United States, 2001-2007: A Multicenter Study. Ophthalmology. 2011;118(5):920–6.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Phan CM, Subbaraman LN, Jones L. In vitro uptake and release of natamycin from conventional and silicone hydrogel contact lens materials. Eye Contact Lens. 2013;39(2):162–8.

    Article  PubMed  Google Scholar 

  12. Ciolino JB, Hudson SP, Mobbs AN, Hoare TR, Iwata NG, Fink GR, et al. A prototype antifungal contact lens. Invest Ophthalmol Vis Sci. 2011;52(9):6286–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Loh AR, Hong K, Lee S, Mannis M, Acharya NR. Practice patterns in the management of fungal corneal ulcers. Cornea. 2009;28(8):856–9.

    Article  PubMed  Google Scholar 

  14. O’day DM, Ray WA, Head WS, Robinson RD. Influence of the corneal epithelium on the efficacy of topical antifungal agents. Invest Ophthalmol Vis Sci. 1984;25(7):855–9.

    PubMed  Google Scholar 

  15. O’day DM, Head WS, Robinson RD, Clanton JA. Corneal penetration of topical amphotericin B and natamycin. Curr Eye Res. 1986;5(11):877–82.

    Article  PubMed  Google Scholar 

  16. Waltman SR, Kaufman HE. Use of hydrophilic contact lenses to increase ocular penetration of topical drugs. Invest Ophthalmol Vis Sci. 1970;9(4):250–5.

    CAS  Google Scholar 

  17. Xie L, Zhong W, Shi W, Sun S. Spectrum of fungal keratitis in north China. Ophthalmology. 2006;113(11):1943–8.

    Article  PubMed  Google Scholar 

  18. Phan CM, Subbaraman L, Liu S, Gu F, Jones L. In vitro uptake and release of natamycin Dex-b-PLA nanoparticles from model contact lens materials. J Biomater Sci Polym Ed. 2014;25(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  19. Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2003;20(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  20. Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials. 2008;29(31):4244–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Trabulo S, Cardoso AL, Mano M, De Lima Pedroso MC. Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals. 2010;3:961–93.

    Article  PubMed Central  CAS  Google Scholar 

  23. Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.

    Article  CAS  PubMed  Google Scholar 

  24. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Aroui S, Brahim S, Waard MD, Kenani A. Cytotoxicity, intracellular distribution and uptake of doxorubicin and doxorubicin coupled to cell-penetrating peptides in different cell lines: a comparative study. Biochem Biophys Res Commun. 2010;391(1):419–25.

    Article  CAS  PubMed  Google Scholar 

  26. Ruan G, Agrawal A, Marcus AI, Nie S. Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc. 2007;129(47):14759–66.

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  CAS  PubMed  Google Scholar 

  28. Cohen-Avrahami M, Shames A, Ottaviani MF, Aserin A, Garti N. HIV-Tat enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. J Phys Chem B. 2014;118(23):6277–87.

    Article  CAS  PubMed  Google Scholar 

  29. Ookubo N, Michiue H, Kitamatsu M, Kamamura M, Nishiki T, Ohmori I, et al. The transdermal inhibition of melanogenesis by a cell-permeable peptide delivery system based on poly-arginine. Biomaterials. 2014;35(15):4508–16.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Su W, Li Q, Li C, Wang H, Li Y, et al. Preparation and evaluation of lidocaine hydrochloride loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm. 2013;441(1–2):748–56.

    Article  CAS  PubMed  Google Scholar 

  31. Manosroi J, Khositsuntiwong N, Manosroi W, Gotz F, Werner RG, Manosroi A. Potent enhancement of transdermal absorption and stability of human tyrosinase plasmid (pAH7/Tyr) by Tat peptide and an entrapment in elastic cationic niosomes. Drug Deliv. 2013;20(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  32. Clinical and Laboratory Standards Institute, Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard CLSI document M38-A2, Clinical and Laboratory Standards Institute, Wayne, PA (2008)

  33. Badhani A, Dabral P, Rana V, Upadhyaya K. Evaluation of cyclodextrins for enhancing corneal penetration of natamycin eye drops. J Pharm Bioallied Sci. 2012;4 Suppl 1:S29–30.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Salvosa FAM, Cubillan LP. In vitro evaluation of natamycin 5% suspension against Aspergillus flavus, Fusarium solani, and Candida parasilopsis. Ophthalmology. 2004;29(1):26–8.

    Google Scholar 

  35. Chugh A, Eudes F. Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochim Biophys Acta. 2007;1768(3):419–26.

    Article  CAS  PubMed  Google Scholar 

  36. Kanduser M, Sentjurc M, Miklavcic D. The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry. 2008;74(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu WL, Shin SY. Effects of dimerization of the cell penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci. 2009;15(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  38. Jung HJ, Park Y, Hahm KS, Lee DG. Biological activity of Tat (47–58) peptide on human pathogenic fungi. Biochem Biophys Res Commun. 2006;345(1):222–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors are thankful to the Department of Biotechnology, Government of India and Kusuma Trust, UK for funding the project and procurement of BD FACS Aria III, respectively. The authors are also thankful to Professor Harpal Singh, Centre for Biomedical Engineering and Professor Aditya Mittal, Kusuma School of Biological Sciences, at Indian Institute of Technology Delhi, India for providing the facility of confocal microscopy and epifluorescence microscopy, respectively. Aastha Jain is thankful to Council for Scientific and Industrial Research, Government of India for the award of Junior and Senior Research Fellowship. The authors would also like to thank Bausch & Lomb, USA and Sight Life, for providing Optisol GS medium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Chugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Z-stacking of HCE cells treated with FITC-Natamycin (AVI 6146 kb)

ESM 2

Z-stacking profile for HCE cells treated FITC-Tat -Nat2 (AVI 30723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Shah, S.G. & Chugh, A. Cell Penetrating Peptides as Efficient Nanocarriers for Delivery of Antifungal Compound, Natamycin for the Treatment of Fungal Keratitis. Pharm Res 32, 1920–1930 (2015). https://doi.org/10.1007/s11095-014-1586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1586-x

Keywords

Navigation