Skip to main content

Advertisement

Log in

Noninvasive Sampling of Gabapentin by Reverse Iontophoresis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Transdermal reverse iontophoresis offers a noninvasive tool for clinical and therapeutic monitoring of drugs and endogenous molecules. This study investigated the viability of reverse iontophoresis as an alternative technique to blood sampling for the monitoring of gabapentin.

Methods

Ex vivo studies assessed the influence of polarity, applied current (0.064–0.32 mA) and subdermal concentration (0.5–20 μg/mL) on the recovery of gabapentin. These experiments were carried out in vertical Franz diffusion cell for a period of 3 h using rat skin. In vivo experiments examined the versatility of this method to extract gabapentin from the subdermal region following intravenous administration of gabapentin (30 mg/kg) in rat model.

Results

Preliminary studies demonstrate that greater amount of gabapentin was extracted in the cathodal chamber due to the contribution of electroosmosis. Increasing the current intensity significantly enhances the extraction flux (P < 0.005) and shown linear relation (r2 = 0.84) between the applied electrical dose (mA*h) and the amount of gabapentin recovered (μg). Indeed, transdermal iontophoresis of gabapentin was found to be concentration dependent in the range studied (0.5–20 μg/mL), which includes clinically relevant level. Further, a linear relationship was established between the iontophoretically recovered gabapentin 3 h flux values and the subdermal concentrations studied. The linear correlation with good regression value (r2 = 0.92) observed in the in vivo studies infers that the drug in the plasma is proportionally extracted through the skin and potentially represents the subdermal drug concentrations.

Conclusions

Given the promising results, this study concludes that the transdermal reverse iontophoresis technique could be a promising alternative for the noninvasive monitoring of gabapentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jacoby A, Snape D, Baker GA. Epilepsy and social identity: the stigma of a chronic neurological disorder. Lancet Neurol. 2005;4(3):171–8.

    Article  PubMed  Google Scholar 

  2. WHO, World Health Organization Epilepsy: Key facts. Available at: www.who.int/mediacentre/factsheets/fs999/en Accessed June 3, 2014.

  3. Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. Proc Natl Acad Sci U S A. 2010;35(7):392–415.

    Google Scholar 

  4. French JA, Gazzola DM. New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety? Ther Adv Drug Saf. 2011;2(4):141–58.

    Article  PubMed Central  PubMed  Google Scholar 

  5. McLean MJ, Gidal BE. Gabapentin dosing in the treatment of epilepsy. Clin Ther. 2003;25(5):1382–406.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Bachari S, Pulman J, Hutton JL, Marson AG. Gabapentin add-on for drug-resistant partial epilepsy. Cochrane Database Syst Rev. 2013;7:CD001415.

    PubMed  Google Scholar 

  7. Rose MA, Kam PC. Gabapentin: pharmacology and its use in pain management. Anaesthesia. 2002;57(5):451–62.

    Article  CAS  PubMed  Google Scholar 

  8. Johannessen SI, Tomson T. Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet. 2006;45:1061–75.

    Article  CAS  PubMed  Google Scholar 

  9. Krasowski MD. Therapeutic drug monitoring of the newer anti-epilepsy medications. Pharmaceuticals. 2010;3:1909–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sivenius J, Kälviäinen R, Ylinen A, Riekkinen P. Double-blind study of Gabapentin in the treatment of partial seizures. Epilepsia. 1991;32(4):539–42.

    Article  CAS  PubMed  Google Scholar 

  11. Johannessen SI, Battino D, Berry DJ, Bialer M, Krämer G, Tomson T, et al. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit. 2003;25:347–63.

    Article  CAS  PubMed  Google Scholar 

  12. Patsalos PN, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther Drug Monit. 2013;35(1):4–29.

    Article  CAS  PubMed  Google Scholar 

  13. Tribut O, Bentué-Ferrer D. Verdier MC; therapeutic drug monitoring of gabapentin. Therapie. 2010;65(1):57–60.

    Article  PubMed  Google Scholar 

  14. Nair AB, Goel A, Prakash S, Kumar A. Therapeutic drug monitoring by reverse iontophoresis. J Basic Clin Pharm. 2012;3:207–13.

    Article  PubMed Central  CAS  Google Scholar 

  15. Berry DJ, Beran RG, Plunkeft MJ, Clarke LA, Hung WT. The absorption of gabapentin following high dose escalation. Seizure. 2003;12(1):28–36.

    Article  PubMed  Google Scholar 

  16. Nixon S, Sieg A, Delgado-Charro MB, Guy RH. Reverse iontophoresis of L-lactate: in vitro and in vivo studies. J Pharm Sci. 2007;96(12):3457–65.

    Article  CAS  PubMed  Google Scholar 

  17. Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey JL, et al. Extraction of amino acids by reverse iontophoresis in vivo. Eur J Pharm Biopharm. 2009;72(1):226–31.

    Article  CAS  PubMed  Google Scholar 

  18. Paulley Y, Delgado-Charro MB, White KAJ. Modelling formation of a drug reservoir in the stratum corneum and its impact on drug monitoring using reverse iontophoresis. Comput Math Method M. 2010;11:353–68.

    Article  Google Scholar 

  19. Wang CY, Maibach HI. Why minimally invasive skin sampling techniques? a bright scientific future. Cutan Ocul Toxicol. 2011;30:1–6.

    Article  PubMed  Google Scholar 

  20. Leboulanger B, Guy RH, Delgado CMB. Reverse iontophoresis for noninvasive transdermal monitoring. Physiol Meas. 2004;25:R35–50.

    Article  PubMed  Google Scholar 

  21. Zhu Z, Neirinck L. High-performance liquid chromatographic method for the determination of gabapentin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;779(2):307–12.

    Article  CAS  PubMed  Google Scholar 

  22. Anroop B, Ghosh B, Parcha V, Kumar A, Khanam J. Synthesis and comparative skin permeability of atenolol and propranolol esters. J Drug Del Sci Tech. 2005;15(2):187–90.

    Article  CAS  Google Scholar 

  23. Nair AB, Vaka SR, Gupta S, Repka MA, Murthy SN. In vitro and in vivo evaluation of a hydrogel-based prototype transdermal patch system of alfuzosin hydrochloride. Pharm Dev Technol. 2012;17:158–63.

    Article  CAS  PubMed  Google Scholar 

  24. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–61.

    Article  CAS  PubMed  Google Scholar 

  25. Nair AB, Singh K, Al-Dhubiab BE, Attimarad M, Harsha S, Alhaider IA. Skin uptake and clearance of ciclopirox following topical application. Biopharm Drug Dispos. 2013;34:540–9.

    Article  CAS  PubMed  Google Scholar 

  26. Anroop B, Ghosh B, Parcha V, Khanam J. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Deliv. 2009;6:280–90.

    Article  CAS  PubMed  Google Scholar 

  27. Sieg A, Wascotte V. Diagnostic and therapeutic applications of iontophoresis. J Drug Target. 2009;17(9):690–700.

    Article  CAS  PubMed  Google Scholar 

  28. Kong VK, Irwin MG. Gabapentin: a multimodal perioperative drug? Br J Anaesth. 2007;99(6):775–86.

    Article  CAS  PubMed  Google Scholar 

  29. Sieg A, Guy RH, Delgado-Charro MB. Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys J. 2004;87(5):3344–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Leboulanger B, Fathi M, Guy RH, Delgado-Charro MB. Reverse iontophoresis as a noninvasive tool for lithium monitoring and pharmacokinetic profiling. Pharm Res. 2004;21(7):1214–22.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez RF, Bentley MV, Delgado-Charro MB, Guy RH. Iontophoretic delivery of 5-aminolevulinic acid (ALA): effect of pH. Pharm Res. 2001;18(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  32. Leboulanger B, Aubry JM, Bondolfi G, Guy RH, Delgado-Charro MB. Lithium monitoring by reverse iontophoresis in vivo. Clin Chem. 2004;50(11):2091–100.

    Article  CAS  PubMed  Google Scholar 

  33. Johannessen Landmark C, Johannessen SI, Tomson T. Host factors affecting antiepileptic drug delivery-pharmacokinetic variability. Adv Drug Deliv Rev. 2012;64(10):896–910.

    Article  CAS  PubMed  Google Scholar 

  34. Nair A, Reddy C, Jacob S. Delivery of a classical antihypertensive agent through the skin by chemical enhancers and iontophoresis. Skin Res Technol. 2009;15:187–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment and Disclosures

The authors thank the Deanship of Scientific Research, King Faisal University for funding this research project No. 140069.

Declaration of Interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anroop B. Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.B., Kumria, R., Al-Dhubiab, B.E. et al. Noninvasive Sampling of Gabapentin by Reverse Iontophoresis. Pharm Res 32, 1417–1424 (2015). https://doi.org/10.1007/s11095-014-1546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1546-5

KEY WORDS

Navigation