Skip to main content

Advertisement

Log in

Effect of a Pluronic® P123 Formulation on the Nitric Oxide-Generating Drug JS-K

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic® P123-formulated JS-K (P123/JS-K) with free JS-K.

Methods

We determined micelle size, shape, and critical micelle concentration of Pluronic® P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenograft in NOD/SCID IL2Rγnull mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters.

Results

Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγnull mice when compared to free JS-K-treated NOD/SCID IL2Rγnull mice.

Conclusions

Pluronic® P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGP:

Alpha 1 acid glycoprotein

AML:

Acute myeloid leukemia

AUC:

Area under the curve

CMC:

Critical micelle concentration

dF:

Difference in the fluorescence in the absence and presence of JS-K or P123/JS-K at the concentration Q

dG:

Free energy

dH:

Enthalpy change

dS:

Entropy change

F:

Quenched fluorescence

f:

Fraction of initial fluorescence accessible to quencher

Fo:

Fluorescence in the absence of external quencher

GSH:

Glutathione

HLB:

Hydrophilic-lipophilic balance

HPLC:

High performance liquid chromatography

HSA:

Human serum albumin

Ka:

Association binding constant

KI:

Potassium iodide

Kq:

Quenching rate constant

Ksv:

Stern Volmer Constant

mL:

Milliliter

mM:

Milimolar

NO:

Nitric oxide

PEO:

Poly(ethylene oxide)

PPO:

Poly(propylene oxide)

Q:

Conc. of quencher/drug

T:

Temperature in Kelvin

TEM:

Transmission electron microscopy

UPLC:

Ultra performance liquid chromatography

μM:

Micromolar

τo :

Average lifetime of HSA molecule in absence of JS-K (quencher) or any other drug

REFERENCES

  1. Facts 2013. The Leukemia and Lymphoma Society. 2013.

  2. Emadi A, Baer MR. Acute myeloid leukemia in adults. In: Greer JP, editor. Wintrobe’s clinical hematology. 13 ed. Lippincott Williams and Wilkins; 2014. p. 1577–1615

  3. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42.

    CAS  PubMed  Google Scholar 

  4. Burgaud JL, Riffaud JP, Del Soldato P. Nitric-oxide releasing molecules: a new class of drugs with several major indications. Curr Pharm Des. 2002;8(3):201–13.

    Article  CAS  PubMed  Google Scholar 

  5. Hibbs Jr JB, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  6. Leon L, Jeannin JF, Bettaieb A. Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide Biol Chem / Off J Nitric Oxide Soc. 2008;19(2):77–83.

    Article  CAS  Google Scholar 

  7. Magrinat G, Mason SN, Shami PJ, Weinberg JB. Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood. 1992;80(8):1880–4.

    CAS  PubMed  Google Scholar 

  8. Shami PJ, Sauls DL, Weinberg JB. Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide. Leukemia. 1998;12(9):1461–6.

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Malavya S, Wang X, Saavedra JE, Keefer LK, Tokar E, et al. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells. Genomics. 2009;94(1):32–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, et al. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther. 2003;2(4):409–17.

    CAS  PubMed  Google Scholar 

  11. Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, et al. Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem. 2006;49(14):4356–66.

    Article  CAS  PubMed  Google Scholar 

  12. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, et al. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007;110(2):709–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Maciag AE, Chakrapani H, Saavedra JE, Morris NL, Holland RJ, Kosak KM, et al. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species. J Pharmacol Exp Ther. 2011;336(2):313–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kiziltepe T, Anderson KC, Kutok JL, Jia L, Boucher KM, Saavedra JE, et al. JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo. J Pharm Pharmacol. 2010;62(1):145–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Simeone AM, McMurtry V, Nieves-Alicea R, Saavedra JE, Keefer LK, Johnson MM, et al. TIMP-2 mediates the anti-invasive effects of the nitric oxide-releasing prodrug JS-K in breast cancer cells. Breast Cancer Res. 2008;10(3):R44.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release Off J Control Release Soc. 2008;130(2):98–106.

    Article  CAS  Google Scholar 

  17. Bi S, Sun Y, Qiao C, Zhang H, Liu C. Binding of several anti-tumor drugs to bovine serum albumin: fluorescence study. J Lumin. 2009;129(5):541–7.

    Article  CAS  Google Scholar 

  18. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug-protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  20. Saavedra JE, Srinivasan A, Bonifant CL, Chu J, Shanklin AP, Flippen-Anderson JL, et al. The secondary amine/nitric oxide complex ion R(2)N[N(O)NO](−) as nucleophile and leaving group in S9N)Ar reactions. J Org Chem. 2001;66(9):3090–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376(1–2):176–85.

    Article  CAS  PubMed  Google Scholar 

  22. Noni Husain RAA, Warner IM. Spectroscopic analysis of the binding of doxorubicin to human.alpha.-1 acid glycoprotein. J Phys Chem. 1993;97(41):10857–61.

    Article  Google Scholar 

  23. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release Off J Control Release Soc. 2002;82(2–3):189–212.

    Article  CAS  Google Scholar 

  24. Shi Y, Liu H, Xu M, Li Z, Xie G, Huang L, et al. Spectroscopic studies on the interaction between an anticancer drug ampelopsin and bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2012;87:251–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SM, Jadegoud Y, Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal. 2006;41(2):393–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release Off J Control Release Soc. 2005;109(1–3):169–88.

    Article  CAS  Google Scholar 

  27. Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic(R) for tumor-targeted delivery of docetaxel. Biomaterials. 2011;32(29):7181–90.

    Article  CAS  PubMed  Google Scholar 

  28. Eve Unt CK, Vaher I, Zilmer M. Red blood cell and whole blood glutathione redox status in endurance-trained men following a ski marathon. J Sports Sci Med. 2008;7:344–9.

    PubMed Central  PubMed  Google Scholar 

  29. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    CAS  PubMed  Google Scholar 

  30. Tesseromatis C, Alevizou A. The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur J Drug Metab Pharmacokinet. 2008;33(4):225–30.

    Article  CAS  PubMed  Google Scholar 

  31. Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096–102.

    Article  CAS  PubMed  Google Scholar 

  32. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kashiba-Iwatsuki M, Miyamoto M, Inoue M. Effect of nitric oxide on the ligand-binding activity of albumin. Arch Biochem Biophys. 1997;345(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  34. Kaur I, Terrazas M, Kosak KM, Kern SE, Boucher KM, Shami PJ. Cellular distribution studies of the nitric oxide-generating antineoplastic prodrug O(2) -(2,4-dinitrophenyl)1-((4-ethoxycarbonyl)piperazin-1-yl)diazen-1-ium-1,2-diolate formulated in Pluronic P123 micelles. J Pharm Pharmacol. 2013;65(9):1329–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by grant RO1 CA129611 from the National Cancer Institute.

Paul Shami is Scientific Founder, Chief Medical Officer and Chairman of the Board of Directors of JSK Therapeutics Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Shami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Kosak, K.M., Terrazas, M. et al. Effect of a Pluronic® P123 Formulation on the Nitric Oxide-Generating Drug JS-K. Pharm Res 32, 1395–1406 (2015). https://doi.org/10.1007/s11095-014-1542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1542-9

KEY WORDS

Navigation