Skip to main content
Log in

Protective Effects of Calycosin Against CCl4-Induced Liver Injury with Activation of FXR and STAT3 in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Investigating the hepatoprotective effect of calycosin against acute liver injury in association with FXR activation and STAT3 phosphorylation.

Methods

The acute liver injury model was established by intraperitoneal injection of CCl4 in C57BL/6 mice. Serum alanine aminotransferase, aspartate aminotransferase, HE staining and TUNEL assay were used to identify the amelioration of the liver histopathological changes and hepatocytes apoptosis after calycosin treatment. ELISA kit and 5-bromo-2-deoxyuridine immunohistochemistry were used to measure the liver bile acid concentration and hepatocyte mitotic rate in vivo. The relation between calycosin and activation of FXR and STAT3 was comfirmed using the Luciferase assay, Molecular docking, Real-time PCR and Western Blot in vitro.

Results

The liver histopathological changes, hepatocytes apoptosis, liver bile acid overload and hepatocyte mitosis showed significant changes after calycosin treatment. Calycosin promoted the expression of FXR target genes such as FoxM1B and SHP but the effect was reversed by FXR suppressor guggulsterone. Molecular docking results indicated that calycosin could be embedded into the binding pocket of FXR, thereby increasing the expressions of STAT3 tyrosine phosphorylation and its target genes, Bcl-xl and SOCS3.

Conclusions

Calycosin plays a critical role in hepatoprotection against liver injury in association with FXR activation and STAT3 phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BA:

Bile acid

Bcl-xl:

B-cell lymphoma-extra large

BSEP:

Bile salt export pump

CNTF:

Ciliary neurotrophic factor

CYP450:

Cytochrome P450

CYP7A1:

Cytochrome P450 7A1

FoxM1B:

Forkhead box M1B

FXR:

Farmesoid X receptor

LIF:

Leukemia inhibitory factor

SHP:

Small heterodimer partner

SOCS3:

Suppressor of cytokine signaling 3

STAT3:

Signal transducer and activator of transcription 3

TCMs:

Traditional Chinese medicines

References

  1. Tirkey N, Pilkhwal S, Kuhad A, Chopra K. Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol. 2005;5:2.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. JAMA. 2002;287:2215–20.

    Article  PubMed  Google Scholar 

  3. Thames G. Drug-induced liver injury: what you need to know. Gastroenterol Nurs. 2004;27:31–3.

    Article  PubMed  Google Scholar 

  4. Paine AJ. Heterogeneity of cytochrome P450 and its toxicological significance. Hum Exp Toxicol. 1995;14:1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Williamsand AT, Burk RF. Carbon tetrachloride hepatotoxicity: an example of free radical-mediated injury. Semin Liver Dis. 1990;10:279–84.

    Article  Google Scholar 

  6. Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127:1497–512.

    Article  CAS  PubMed  Google Scholar 

  7. Vaquero J, Briz O, Herraez E, Muntane J, Marin JJ. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta. 1833;2013:2212–9.

    Google Scholar 

  8. Meng Z, Wang Y, Wang L, Jin W, Liu N, Pan H, et al. FXR regulates liver repair after CCl4-induced toxic injury. Mol Endocrinol. 2010;24:886–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen WD, Wang YD, Zhang L, Shiah S, Wang M, Yang F, et al. Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology. 2010;51:953–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312:233–6.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003;112:1678–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Howarth DL, Law SH, Law JM, Mondon JA, Kullman SW, Hinton DE. Exposure to the synthetic FXR agonist GW4064 causes alterations in gene expression and sublethal hepatotoxicity in eleutheroembryo medaka (Oryzias latipes). Toxicol Appl Pharmacol. 2010;243:111–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gao B. Cytokines, STATs and liver disease. Cell Mol Immunol. 2005;2:92–100.

    CAS  PubMed  Google Scholar 

  14. Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor. CNTFR Alpha Pharm Acta Helv. 2000;74:265–72.

    Article  CAS  Google Scholar 

  15. Taub R. Hepatoprotection via the IL-6/Stat3 pathway. J Clin Invest. 2003;112:978–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hong F, Radaeva S, Pan HN, Tian Z, Veech R, Gao B. Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver disease. Hepatology. 2004;40:933–41.

    Article  CAS  PubMed  Google Scholar 

  17. Bohm F, Kohler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med. 2010;2:294–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Demirdag K, Bahcecioglu IH, Ozercan IH, Ozden M, Yilmaz S, Kalkan A. Role of L-carnitine in the prevention of acute liver damage induced by carbon tetrachloride in rats. J Gastroenterol Hepatol. 2004;19:333–8.

    Article  CAS  PubMed  Google Scholar 

  19. Balunasand MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78:431–41.

    Article  Google Scholar 

  20. Dong H, Lu FE, Zhao L. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin J Integr Med. 2012;18:152–60.

    Article  PubMed  Google Scholar 

  21. Sun WY, Wei W, Gui SY, Wu L, Wang H. Protective effect of extract from Paeonia lactiflora and Astragalus membranaceus against liver injury induced by bacillus Calmette-Guerin and lipopolysaccharide in mice. Basic Clin Pharmacol Toxicol. 2008;103:143–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yan F, Zhang QY, Jiao L, Han T, Zhang H, Qin LP, et al. Synergistic hepatoprotective effect of Schisandrae lignans with Astragalus polysaccharides on chronic liver injury in rats. Phytomedicine. 2009;16:805–13.

    Article  CAS  PubMed  Google Scholar 

  23. Gui SY, Wei W, Wang H, Wu L, Sun WY, Chen WB, et al. Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats. J Ethnopharmacol. 2006;103:154–9.

    Article  PubMed  Google Scholar 

  24. Fan Y, Wu DZ, Gong YQ, Zhou JY, Hu ZB. Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells. Eur J Pharmacol. 2003;481:33–40.

    Article  CAS  PubMed  Google Scholar 

  25. Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology. 2000;31:149–59.

    Article  CAS  PubMed  Google Scholar 

  26. Shomer NH, Dangler CA, Schrenzel MD, Fox JG. Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect Immun. 1997;65:4858–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sang Y, Yang J, Ross CR, Rowland RR, Blecha F. Molecular identification and functional expression of porcine Toll-like receptor (TLR) 3 and TLR7. Vet Immunol Immunopathol. 2008;125:162–7.

    Article  CAS  PubMed  Google Scholar 

  28. Asaoka K, Ikeda K, Hishinuma T, Horie-Inoue K, Takeda S, Inoue S. A retrovirus restriction factor TRIM5alpha is transcriptionally regulated by interferons. Biochem Biophys Res Commun. 2005;338:1950–6.

    Article  CAS  PubMed  Google Scholar 

  29. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 2003;11:1079–92.

    Article  CAS  PubMed  Google Scholar 

  30. Bleibel W, Kim S, D’Silva K, Lemmer ER. Drug-induced liver injury: review article. Dig Dis Sci. 2007;52:2463–71.

    Article  PubMed  Google Scholar 

  31. Antti Zitting GS. Juha Nickels, Heikki Savolainen. acute toxic effects of trinitrotoluene on rat brain, liver and kidney: role of radical production. Arch Toxicol. 1982;51:12.

    Google Scholar 

  32. Wang MY, Anderson G, Nowicki D, Jensen J. Hepatic protection by noni fruit juice against CCl(4)-induced chronic liver damage in female SD rats. Plant Foods Hum Nutr. 2008;63:141–5.

    Article  CAS  PubMed  Google Scholar 

  33. Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science. 1996;272:1336–9.

    Article  CAS  PubMed  Google Scholar 

  34. Thompsonand R, Strautnieks S. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis. 2001;21:545–50.

    Article  Google Scholar 

  35. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6:517–26.

    Article  CAS  PubMed  Google Scholar 

  36. Ye H, Holterman AX, Yoo KW, Franks RR, Costa RH. Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol Cell Biol. 1999;19:8570–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Brattin WJ, Glende Jr EA, Recknagel RO. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med. 1985;1:27–38.

    Article  CAS  PubMed  Google Scholar 

  38. Batallerand R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    Article  Google Scholar 

  39. Duncan SA. Transcriptional regulation of liver development. Dev Dyn. 2000;219:131–42.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Quail E, Hung NJ, Tan Y, Ye H, Costa RH. Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci U S A. 2001;98:11468–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zachariaeand W, Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 1999;13:2039–58.

    Article  Google Scholar 

  42. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002;296:1703–6.

    Article  CAS  PubMed  Google Scholar 

  43. Moh A, Iwamoto Y, Chai GX, Zhang SS, Kano A, Yang DD, et al. Role of STAT3 in liver regeneration: survival, DNA synthesis, inflammatory reaction and liver mass recovery. Lab Invest. 2007;87:1018–28.

    Article  CAS  PubMed  Google Scholar 

  44. Takehara T, Tatsumi T, Suzuki T, Rucker 3rd EB, Hennighausen L, Jinushi M, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127:1189–97.

    Article  CAS  PubMed  Google Scholar 

  45. Jo D, Liu D, Yao S, Collins RD, Hawiger J. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat Med. 2005;11:892–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by a grant from the National Natural Science Foundation of The People’s Republic of China (No. 81273580, 81302826).

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Meng, Q., Wang, C. et al. Protective Effects of Calycosin Against CCl4-Induced Liver Injury with Activation of FXR and STAT3 in Mice. Pharm Res 32, 538–548 (2015). https://doi.org/10.1007/s11095-014-1483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1483-3

KEY WORDS

Navigation