Skip to main content

Advertisement

Log in

Characterisation of Skin Barrier Function Using Bioengineering and Biophysical Techniques

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To characterise skin barrier function in vivo at two distinct anatomic sites using minimally invasive bioengineering and biophysical tools.

Methods

In healthy human volunteers, the quantities of stratum corneum (SC) per unit area of skin on the forearm and forehead were quantified by gravimetric and imaging techniques. Organisation of the SC intercellular lipids was evaluated as a function of position using attenuated total reflectance infrared spectroscopy (ATR-IR). The constituents of natural moisturising factor (NMF) were extracted from tape-stripped samples of the SC and by reverse iontophoresis; 21 components were identified and quantified by liquid chromatography with mass spectrometric detection.

Results

SC was quantified more accurately by imaging and was significantly thinner on the forehead than on the forearm. Intercellular lipids were more disordered near the skin surface at both sites; however, throughout forearm SC, the lipids were substantially better organised than those in the forehead. Compositionally, the NMF from forearm and forehead SC was similar, but the total amount extractable from the forehead was smaller.

Conclusion

Taken together, the bioengineering and biophysical techniques employed demonstrate, in a complementary, objective and quantitative fashion, that SC barrier function on the forehead is less competent than that on the forearm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Atopic Dermatitis

ASC :

SC absorbance

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared spectroscopy

DPK:

Dermatopharmacokinetics

GSC :

Mean greyscale value of tape onto which SC has been stripped

Gtape :

Mean greyscale value of a blank tape

l:

Thickness of the corneocytes on the tape

LCMS:

Liquid chromatography mass spectrometry

MSC :

Weight of SC on each tape

NMF:

Natural moisturizing factor

PCA:

Pyrrolidone carboxylic acid

SC:

Stratum corneum

TEWL:

Transepidermal water loss

αSC :

Absorption coefficient of the SC

References

  1. Rawlings A, Matts P. Stratum corneum moisturization at the molecular level : an update in relation to the dry skin cycle. J Invest Dermatol. 2005;124(6):1099–110.

    Article  CAS  PubMed  Google Scholar 

  2. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules: source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta. 1982;719(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  3. Rawlings A, Harding C. Moisturization and skin barrier function. Dermatol Ther. 2004;17(s1):43–8.

    Article  PubMed  Google Scholar 

  4. Kezic S, Kemperman P, Koster E, de Jongh C, Thio H, Campbell L, et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Invest Dermatol. 2008;128(8):2117–9.

    Article  CAS  PubMed  Google Scholar 

  5. Barrett JG, Scott IR. Pyrrolidone carboxylic acid synthesis in guinea pig epidermis. J Invest Dermatol. 1983;81(2):122–4.

    Article  CAS  PubMed  Google Scholar 

  6. Caspers PJ, Lucassen GW, Carter EA, Bruining HA, Puppels GJ. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol. 2001;116(3):434–42.

    Article  CAS  PubMed  Google Scholar 

  7. Muller S, Marenholz I, Lee Y, Sengler C, Zitnik S, Griffioen R, et al. Association of filaggrin loss-of-function-mutations with atopic dermatitis and asthma in the Early Treatment of the Atopic Child (ETAC) population. Pediatr Allergy Immunol. 2009;20(4):358–61.

    Article  PubMed  Google Scholar 

  8. Nomura T, Akiyama M, Sandilands A, Nemoto-Hasebe I, Sakai K, Nagasaki A, et al. Prevalent and rare mutations in the gene encoding filaggrin in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J Invest Dermatol. 2009;129:1302–5.

    Article  CAS  PubMed  Google Scholar 

  9. Nemoto-Hasebe I, Akiyama M, Nomura T, Sandilands A, McLean WHI, Shimizu H. Clinical severity correlates with impaired barrier in filaggrin-related eczema. J Invest Dermatol. 2009;129(3):682–9.

    Article  CAS  PubMed  Google Scholar 

  10. Brown SJ, Irvine AD. Atopic eczema and the filaggrin story. Semin Cutan Med Surg. 2008;27(2):128–37.

    Article  CAS  PubMed  Google Scholar 

  11. Kezic S, Kammeyer A, Calkoen F, Fluhr JW, Bos JD. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol. 2009;161(5):1098–104.

    Article  CAS  PubMed  Google Scholar 

  12. Horii I, Nakayama Y, Obata M, Tagami H. Stratum corneum hydration and amino acid content in xerotic skin. Br J Dermatol. 1989;121(5):587–92.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi M, Tezuka T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch Dermatol Res. 2004;295(10):448–52.

    Article  CAS  PubMed  Google Scholar 

  14. Denda M, Hori J, Koyama J, Yoshida S, Nanba R, Takahashi M, et al. Stratum corneum sphingolipids and free amino acids in experimentally-induced scaly skin. Arch Dermatol Res. 1992;284(6):363–7.

    Article  CAS  PubMed  Google Scholar 

  15. Sylvestre JP, Bouissou CC, Guy RH, Delgado-Charro MB. Extraction and quantification of amino acids in human stratum corneum in vivo. Br J Dermatol. 2010;163(3):458–65.

    Article  CAS  PubMed  Google Scholar 

  16. Sieg A, Jeanneret F, Fathi M, Hochstrasser D, Rudaz S, Veuthey J-L, et al. Extraction of amino acids by reverse iontophoresis in vivo. Eur J Pharm Biopharm. 2009;72(1):226–31.

    Article  CAS  PubMed  Google Scholar 

  17. Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res. 1999;291(10):555–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rougier A, Lotte C, Maibach HI. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: Predictive assessment by the stripping method. J Pharm Sci. 1987;76(6):451–4.

    Article  CAS  PubMed  Google Scholar 

  19. Machado M, Salgado TM, Hadgraft J, Lane ME. The relationship between transepidermal water loss and skin permeability. Int J Pharm. 2010;384(1–2):73–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rougier A, Lotte C, Corcuff P, Maibach HI. Relationship between skin permeability and corneocyte size according to anatomic site, age, and sex in man. J Soc Cosmet Chem. 1988;39(1):15–26.

    Google Scholar 

  21. Harding C, Long S, Richardson J, Rogers J, Zhang Z, Bush A, et al. The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci. 2003;25(4):157–67.

    Article  CAS  PubMed  Google Scholar 

  22. Voegeli R, Rawlings A, Doppler S, Heiland J, Schreier T. Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci. 2007;29(3):191–200.

    Article  CAS  PubMed  Google Scholar 

  23. Russell LM, Guy RH. Novel imaging method to quantify stratum corneum in dermatopharmacokinetic studies: proof-of-concept with acyclovir formulations. Pharm Res. 2012;29(12):3362–72.

  24. Russell LM, Guy RH. Novel imaging method to quantify stratum corneum in dermatopharmacokinetic studies. Pharm Res. 2012;29(9):2389–97.

  25. Mohammed D, Yang Q, Guy RH, Matts PJ, Hadgraft J, Lane ME. Comparison of gravimetric and spectroscopic approaches to quantify stratum corneum removed by tape-stripping. Eur J Pharm Biopharm. 2012;82(1):171–4.

    Article  CAS  PubMed  Google Scholar 

  26. Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006;1758(7):923–33.

    Article  CAS  PubMed  Google Scholar 

  27. Kalia YN, Alberti I, Sekkat N, Curdy C, Naik A, Guy RH. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharm Res. 2000;17(9):1148–50.

    Article  CAS  PubMed  Google Scholar 

  28. Bommannan D, Potts RO, Guy RH. Examination of stratum corneum barrier function in vivo by infrared spectroscopy. J Investig Dermatol. 1990;95(4):403–8.

    Article  CAS  PubMed  Google Scholar 

  29. Russell LM, Wiedersberg S, Delgado-Charro MB. The determination of stratum corneum thickness An alternative approach. Eur J Pharm Biopharm. 2008;69(3):861–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wolfersberger MG, Tabachnik J. Pyrrolidone carboxylic acid (pyroglutamic acid) in normal plasma. Cell Mol Life Sci. 1973;29(3):346–7.

    Article  CAS  Google Scholar 

  31. Kingsbury KJ, Kay L, Hjelm M. Contrasting plasma free amino acid patterns in elite athletes: association with fatigue and infection. Br J Sports Med. 1998;32(1):25–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Brancaleon L, Bamberg MP, Kollias N. Spectral differences between stratum corneum and sebaceous molecular components in the mid-IR. Appl Spectrosc. 2000;54(8):1175–82.

    Article  CAS  Google Scholar 

  33. Gay CL, Guy RH, Golden GM, Mak VHW, Francoeur ML. Characterization of low-temperature (i.e., < 65 degrees C) lipid transitions in human stratum corneum. J Investig Dermatol. 1994;103(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  34. Abeyakirthi S, Mowbray M, Van Overloop L, Wheatley P, Morris R, Declercq L, et al. Arginase enzyme is overactive in non-lesional psoriatic skin. Nitric Oxide. 2008;19(Supplement 1):35.

    Article  Google Scholar 

  35. Chavanas S, Méchin M-C, Nachat R, Adoue V, Coudane F, Serre G, et al. Peptidylarginine deiminases and deimination in biology and pathology: relevance to skin homeostasis. J Dermatol Sci. 2006;44(2):63–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Quan Yang thanks the University of Bath for the award of a PhD studentship.

Disclaimer

The opinions expressed in the paper are those of the authors alone and not those of MHRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Guy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Guy, R.H. Characterisation of Skin Barrier Function Using Bioengineering and Biophysical Techniques. Pharm Res 32, 445–457 (2015). https://doi.org/10.1007/s11095-014-1473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1473-5

KEY WORDS

Navigation