Skip to main content
Log in

Co-Spray Dried Carbohydrate Microparticles: Crystallisation Delay/Inhibition and Improved Aerosolization Characteristics Through the Incorporation of Hydroxypropyl-β-cyclodextrin with Amorphous Raffinose or Trehalose

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To formulate and investigate the physicochemical properties, physical stability and aerosolization characteristics of nanoporous/nanoparticulate microparticles (NPMPs) prepared by co-spray drying the sugars raffinose pentahydrate (R) or trehalose dihydrate (T) with the cyclic oligosaccharide hydroxypropyl-β-cyclodextrin (HPβCD).

Methods

Production of powders was carried out using a laboratory scale spray dryer. The resulting powders were characterised by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), laser diffraction particle sizing, specific surface area analysis (SSA), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), dynamic vapour sorption (DVS) and aerodynamic assessment using a Next Generation Impactor (NGI).

Results

Powders were amorphous and composed of spherical, porous microparticles with reduced particle size and high specific surface area (~100 m2/g). DSC scans showed a single glass transition temperature. FTIR was indicative of the existence of molecular interactions between the carbohydrates. DVS analysis showed an increase in the critical relative humidity (RH) of raffinose and trehalose and eventual crystallization inhibition with increasing concentration of HPβCD. The in vitro deposition showed powders formulated with HPβCD had higher recovered emitted dose and fine particle fraction (<5 μm) than raffinose and trehalose spray dried alone.

Conclusions

The co-spray drying of raffinose or trehalose with HPβCD results in powders with improved physicochemical characteristics, physical stability and aerodynamic behaviour compared to spray-dried raffinose/trehalose particles, constituting improved potential drug-carrier systems for pulmonary delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Colaço C, Sen S, Thangavelu M, Pinder S, Roser B. Extraordinary Stability of Enzymes Dried in Trehalose: Simplified Molecular Biology. Bio/Technology. 1992;10:1007–11. 1.

  2. Johnson K. Preparation of peptide and protein powders for inhalation. Adv. Drug Deliv. Rev. Elsevier Sci B.V.; 1997;26:3–15.

  3. Maury M, Murphy K, Kumar S, Shi L, Lee G. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59:565–73.

    Article  CAS  PubMed  Google Scholar 

  4. López-Díez EC, Bone S. The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms. Biochim Biophys Acta. 2004;1673:139–48.

    Article  PubMed  Google Scholar 

  5. Yoshii H, Buche F, Takeuchi N, Terrol C, Ohgawara M, Furuta T. Effects of protein on retention of ADH enzyme activity encapsulated in trehalose matrices by spray drying. J Food Eng. 2008;87:34–9.

    Article  CAS  Google Scholar 

  6. Ogáin ON, Li J, Tajber L, Corrigan OI, Healy AM. Particle engineering of materials for oral inhalation by dry powder inhalers. I-Particles of sugar excipients (trehalose and raffinose) for protein delivery. Int J Pharm. 2011;405:23–35.

    Article  PubMed  Google Scholar 

  7. Carpenter JF, Crowe JH. The mechanism of cryoprotection of proteins by solutes. Cryobiology. 1988;25:244–55.

    Article  CAS  PubMed  Google Scholar 

  8. Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989;28:3916–22.

    Article  CAS  PubMed  Google Scholar 

  9. Franks F, Hatley RHM, Mathias SF. Materials science and the production of shelf-stable biologicals. Biopharm-the Technol Bus Biopharm. 1991;4:38–41.

    CAS  Google Scholar 

  10. Amaro M, Tajber L, Corrigan O, Healy A. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int J Pharm. 2011;421:99–109.

    Article  CAS  PubMed  Google Scholar 

  11. Hancock BC, Shamblin SL. Water vapour sorption by pharmaceutical sugars. Pharm Sci Technol Today. 1998;1:345–51.

    Article  CAS  Google Scholar 

  12. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.

    Article  CAS  PubMed  Google Scholar 

  13. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J. Pharm. 2012;1–23.

  14. Hogan SE, Buckton G. Water sorption/desorption–near IR and calorimetric study of crystalline and amorphous raffinose. Int J Pharm. 2001;227:57–69.

    Article  CAS  PubMed  Google Scholar 

  15. Chamarthy SP, Khalef N, Trasi N, Bakri A, Carvajal MT, Pinal R. The effect of dehydration conditions on the functionality of anhydrous amorphous raffinose. Eur J Pharm Sci. 2010;40:171–8.

    Article  CAS  PubMed  Google Scholar 

  16. Schebor C, Mazzobre MF, Buera MDP. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydr Res. 2010;345:303–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sun W, Davidson P. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization. Biochim Biophys Acta. 1998;1425:235–44.

    Article  CAS  PubMed  Google Scholar 

  18. Davidson P, Sun WQ. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg. Pharm Res. 2001;18:474–9.

    Article  CAS  PubMed  Google Scholar 

  19. Buera P, Schebor C, Elizalde B. Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations. J Food Eng. 2005;67:157–65.

    Article  Google Scholar 

  20. Leinen KM, Labuza TP. Crystallization inhibition of an amorphous sucrose system using raffinose. J Zhejiang Univ Sci B. 2006;7:85–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sinha S, Baboota S, Ali M, Kumar A, Ali J. Solid dispersion: an alternative technique for bioavailability enhancement of poorly soluble drugs. J Dispers Sci Technol. 2009;30:1458–73.

    Article  CAS  Google Scholar 

  22. Mazzobre MF, del Pilar BM, Chirife J. Protective role of trehalose on thermal stability of lactase in relation to its glass and crystal forming properties and effect of delaying crystallization. LWT-Food Sci Technol. 1997;30:324–9.

    Article  CAS  Google Scholar 

  23. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  24. Muñoz-Ruiz A. Particle and powder properties of cyclodextrins. Int J Pharm. 1997;148:33–9.

    Article  Google Scholar 

  25. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.

    Article  CAS  PubMed  Google Scholar 

  26. Shao Z, Krishnamoorthy R, Mitra AK. Cyclodextrins as nasal absorption promoters of insulin: mechanistic evaluations. Pharm Res. 1992;9:1157–63.

    Article  CAS  PubMed  Google Scholar 

  27. Branchu S, Forbes RT, York P, Petrén S, Nyqvist H, Camber O. Hydroxypropyl-beta-cyclodextrin inhibits spray-drying-induced inactivation of beta-galactosidase. J Pharm Sci. 1999;88:905–11.

    Article  CAS  PubMed  Google Scholar 

  28. Bosquillon C, Lombry C, Préat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70:329–39.

    Article  CAS  PubMed  Google Scholar 

  29. Bosquillon C, Lombry C, Preat V, Vanbever R. Comparison of particle sizing techniques in the case of inhalation dry powders. J Pharm Sci. 2001;90:2032–41.

    Article  CAS  PubMed  Google Scholar 

  30. Maa YF, Costantino HR, Nguyen PA, Hsu CC. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol. 1997;2:213–23.

    Article  CAS  PubMed  Google Scholar 

  31. Healy AM, McDonald BF, Tajber L, Corrigan OI. Characterisation of excipient-free nanoporous microparticles (NPMPs) of bendroflumethiazide. Eur J Pharm Biopharm. 2008;69:1182–6.

    Article  CAS  PubMed  Google Scholar 

  32. Burnett D, Thielmann F. Impact of Protein Concentration on the Moisture-Induced Phase Transitions of Protein-Sugar Formulations. Amer. Biotech, Lab. 2006;1–10.

  33. Bravo-Osuna I, Ferrero C, Jiménez-Castellanos MR. Water sorption–desorption behaviour of methyl methacrylate-starch copolymers: effect of hydrophobic graft and drying method. Eur J Pharm Biopharm. 2005;59:537–48.

    Article  CAS  PubMed  Google Scholar 

  34. Tewes F, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Development and characterisation of soluble polymeric particles for pulmonary peptide delivery. Eur J Pharm Sci. 2010;41:337–52.

    Article  CAS  PubMed  Google Scholar 

  35. European pharmacopoeia. Preparations for inhalation: Aerodynamic assessment of fine particles. 7th Editio. Strasbourg; 2012. p. 274–84.

  36. Murthy NS, Minor H, Bednarczyk C, Krimm S. Structure of the amorphous phase in oriented polymers. Macromolecules. 1993;25:1712–21.

    Article  Google Scholar 

  37. Bosquillon C, Rouxhet PG, Ahimou F, Simon D, Culot C, Préat V, et al. Aerosolization properties, surface composition and physical state of spray-dried protein powders. J Control Release. 2004;99:357–67.

    Article  CAS  PubMed  Google Scholar 

  38. Wolkers WF, Oldenhof H, Alberda M, Hoekstra FA. A fourier transform infrared microspectroscopy study of sugar glasses: application to anhydrobiotic higher plant cells. Biochim Biophys Acta. 1998;1379:83–96.

    Article  CAS  PubMed  Google Scholar 

  39. Akao K, Okubo Y, Asakawa N, Inoue Y, Sakurai M. Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer. Carbohydr Res. 2001;334:233–41.

    Article  CAS  PubMed  Google Scholar 

  40. Wolkers WF, Oliver AE, Tablin F, Crowe JH. A fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res. 2004;339:1077–85.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng W-T, Lin S-Y. Processes of dehydration and rehydration of raffinose pentahydrate investigated by thermal analysis and FT-IR/DSC microscopic system. Carbohydr Polym. 2006;64:212–7.

    Article  CAS  Google Scholar 

  42. Misiuk W, Zalewska M. Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2009;77:482–8.

    Article  CAS  Google Scholar 

  43. Wu X, Li X, Mansour H. Surface analytical techniques in solid-state particle characterization for predicting performance in dry powder inhalers. KONA Powder Part J. 2010;28:3–19.

    Article  CAS  Google Scholar 

  44. Yavuz B, Bilensoy E, Vural I, Sumnu M. Alternative oral exemestane formulation: improved dissolution and permeation. Int J Pharm. 2010;398:137–45.

    Article  CAS  PubMed  Google Scholar 

  45. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. A study of the glass transition of amylopectin—sugar mixtures. Polymer. 1993;34:346–58.

    Article  CAS  Google Scholar 

  46. Chen T, Bhowmick S, Sputtek A, Fowler A, Toner M. The glass transition temperature of mixtures of trehalose and hydroxyethyl starch. Cryobiology. 2002;44:301–6.

    Article  CAS  PubMed  Google Scholar 

  47. Tajber L, Corrigan OI, Healy AM. Physicochemical evaluation of PVP-thiazide diuretic interactions in co-spray-dried composites–analysis of glass transition composition relationships. Eur J Pharm Sci. 2005;24:553–63.

    Article  CAS  PubMed  Google Scholar 

  48. Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J Polym Sci Polym Lett Ed. 1984;22:307–13.

    Article  CAS  Google Scholar 

  49. Nagase H, Endo T, Ueda H, Nakagaki M. An anhydrous polymorphic form of trehalose. Carbohydr Res. 2002;337:167–73.

    Article  CAS  PubMed  Google Scholar 

  50. Pinto SS, Moura-ramos JJ. Crystalline anhydrous-trehalose (polymorph b) and crystalline dihydrate a, a -trehalose : A calorimetric study. J Chem Thermodyn. 2006;38:1130–8.

    Article  CAS  Google Scholar 

  51. Ohashi T, Yoshii H, Furuta T. Innovative crystal transformation of dihydrate trehalose to anhydrous trehalose using ethanol. Carbohydr Res. 2007;342:819–25.

    Article  CAS  PubMed  Google Scholar 

  52. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic; 1982.

    Google Scholar 

  53. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985;603–19.

  54. Thielmann F. Hysteresis Effects in Vapour Sorption. Surf. Meas. Syst. Ltd. London: Surface Measurements Systems Ltd; 2004; 1–8.

  55. Paluch KJ, Tajber L, Corrigan OI, Healy AM. Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system. J Pharm Pharmacol. 2012;64:1570–82.

    Article  CAS  PubMed  Google Scholar 

  56. Clinkenbeard KD, Thiessen AE. Mechanism of action of Moraxella bovis hemolysin. Infect Immun. 1991;59:1148–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  CAS  PubMed  Google Scholar 

  58. Nagase H, Ogawa N, Endo T, Shiro M, Ueda H, Sakurai M. Crystal structure of an anhydrous form of trehalose : structure of water channels of trehalose polymorphism. J Phys Chem B. 2008;112(9):105–11.

    Google Scholar 

  59. Taylor LS, Zografi G. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87:1615–21.

    Article  CAS  PubMed  Google Scholar 

  60. Painter PC, Graf JF, Coleman MM. Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends. Macromolecules. 1991;24:5630–8.

    Article  CAS  Google Scholar 

  61. Shamblin SL, Taylor LS, Zografi G. Mixing behavior of colyophilized binary systems. J Pharm Sci. 1998;87:694–701.

    Article  CAS  PubMed  Google Scholar 

  62. Daniher DI, Zhu J. Dry powder platform for pulmonary drug delivery. Particuology. 2008;6:225–38.

    Article  CAS  Google Scholar 

  63. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 1999;1735–42.

  64. Nolan LM, Li J, Tajber L, Corrigan OI, Healy AM. Particle engineering of materials for oral inhalation by dry powder inhalers. II-Sodium cromoglicate. Int J Pharm. 2011;405:36–46.

    Article  CAS  PubMed  Google Scholar 

  65. Tabor D. Surface forces and surface interactions. J Colloid Interface Sci. 1977;58:2–13.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 07/SRC/B1154 and Grant Number SFI/12/RC/2275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Marie Healy.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaro, M.I., Tajber, L., Corrigan, O.I. et al. Co-Spray Dried Carbohydrate Microparticles: Crystallisation Delay/Inhibition and Improved Aerosolization Characteristics Through the Incorporation of Hydroxypropyl-β-cyclodextrin with Amorphous Raffinose or Trehalose. Pharm Res 32, 180–195 (2015). https://doi.org/10.1007/s11095-014-1454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1454-8

KEY WORDS

Navigation