Skip to main content

Advertisement

Log in

Theranostic Nanoparticles for Cancer and Cardiovascular Applications

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Theranostics have received enormous attentions for individualized diagnosis and treatment in the past few years. Especially, the availability of various nanoplatforms provides great potentials for designing of sophisticated theranostic agents including imaging, targeting and therapeutic functions. Numerous reports have been published on how to construct multifunctional nanoparticles for the targeted diagnosis and therapy simultaneously since the concept of “theranostics”. This review presents recent advances of molecular imaging and nanoplatform technology, and their applications in drug discovery and development. Applications of nanoplatform-based theranostics in cancer and cardiovascular diseases will also be covered including diagnosis, assessment of drug biodistribution, and visualization of drug release from nanoparticles, as well as monitoring of therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun D. Nanotheranostics: integration of imaging and targeted drug delivery. Mol Pharm. 2010;7(6):1879.

    CAS  PubMed  Google Scholar 

  2. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23(36):H217–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011;22(10):1879–903.

    CAS  Google Scholar 

  4. Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today. 2012;17(17–18):928–34.

    CAS  PubMed  Google Scholar 

  5. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    CAS  PubMed  Google Scholar 

  6. Mi Kyung Yu JP, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3–44.

    PubMed Central  PubMed  Google Scholar 

  7. Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899–912.

    CAS  PubMed  Google Scholar 

  8. Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    CAS  PubMed  Google Scholar 

  9. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    CAS  PubMed  Google Scholar 

  10. Tong R, Cheng JJ. Anticancer polymeric nanomedicines. Polym Rev. 2007;47(3):345–81.

    CAS  Google Scholar 

  11. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cell. 2011;31(4):295–302.

    CAS  Google Scholar 

  12. Sahoo SK, Labhasetwar V. Nanotech approaches to delivery and imaging drug. Drug Discov Today. 2003;8(24):1112–20.

    CAS  PubMed  Google Scholar 

  13. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65(7):500–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliver Rev. 2011;63(9):772–88.

    CAS  Google Scholar 

  15. Cai WB, Rao JH, Gambhir SS, Chen XY. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther. 2006;5(11):2624–33.

    CAS  PubMed  Google Scholar 

  16. Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Accounts Chem Res. 2011;44(10):1050–60.

    CAS  Google Scholar 

  17. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev. 2010;62(11):1052–63.

    CAS  Google Scholar 

  18. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607.

    CAS  PubMed  Google Scholar 

  19. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2(2):123–31.

    CAS  PubMed  Google Scholar 

  20. Wong DF, Tauscher J, Grunder G. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology. 2009;34(1):187–203.

    CAS  PubMed  Google Scholar 

  21. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™ a humanized monoclonal antibody against integrin αvβ3. Cancer Res. 2006;66(19):9673–81.

    CAS  PubMed  Google Scholar 

  22. Niu G, Sun X, Cao Q, Courter D, Koong A, Le QT, et al. Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res. 2010;16(7):2095–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Weiler Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30.

    PubMed  Google Scholar 

  24. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. New Engl J Med. 2003;348(25):2500–7.

    PubMed  Google Scholar 

  25. Pelosi E, Deandreis D. The role of 18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) in the management of patients with colorectal cancer. Eur J Surg Oncol. 2007;33(1):1–6.

    CAS  PubMed  Google Scholar 

  26. J Nucl Med op. FDA approves 18F-florbetapir PET agent. J Nucl Med. 2012; 53(6): 15N–15N.

    Google Scholar 

  27. Cain SM, Ruest T, Pimlott S, Patterson J, Duncan R, Dewar D, et al. High resolution micro-SPECT scanning in rats using 125I β-CIT: Effects of chronic treatment with carbamazepine. Epilepsia. 2009;50(8):1962–70.

    CAS  PubMed  Google Scholar 

  28. Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, et al. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148–56.

    CAS  PubMed  Google Scholar 

  29. Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    PubMed  Google Scholar 

  30. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.

    PubMed Central  PubMed  Google Scholar 

  31. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S113–20.

    PubMed  Google Scholar 

  32. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S56–68.

    PubMed  Google Scholar 

  33. Zweifel M, Padhani AR. Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools? Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S164–82.

    PubMed  Google Scholar 

  34. Murphy SE, Mackay CE. Using MRI to measure drug action: caveats and new directions. J Psychopharmacol. 2011;25(9):1168–74.

    CAS  PubMed  Google Scholar 

  35. Kalber TL, Kamaly N, Higham SA, Pugh JA, Bunch J, McLeod CW, et al. Synthesis and characterization of a theranostic vascular disrupting agent for in vivo MR imaging. Bioconjug Chem. 2011;22(5):879–86.

    CAS  PubMed  Google Scholar 

  36. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.

    CAS  PubMed  Google Scholar 

  37. Xie J, Liu G, Eden HS, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res. 2011;44(10):883–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wolf W, Albright MJ, Silver MS, Weber H, Reichardt U, Sauer R. Fluorine-19 NMR spectroscopic studies of the metabolism of 5-fluorouracil in the liver of patients undergoing chemotherapy. Magn Reson Imaging. 1987;5(3):165–9.

    CAS  PubMed  Google Scholar 

  39. Wolf W, Waluch V, Presant CA. Non-invasive 19F-NMRS of 5-fluorouracil in pharmacokinetics and pharmacodynamic studies. NMR Biomed. 1998;11(7):380–7.

    CAS  PubMed  Google Scholar 

  40. Chen J, Lanza GM, Wickline SA. Quantitative magnetic resonance fluorine imaging: today and tomorrow. WIREs Nanomed Nanobi. 2010;2(4):431–40.

    CAS  Google Scholar 

  41. Noth U, Morrissey SP, Deichmann R, Jung S, Adolf H, Haase A, et al. Perfluoro-15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif Cell Blood Sub. 1997;25(3):243–54.

    CAS  Google Scholar 

  42. Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med. 2009;62(3):747–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24(2):114–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev. 2009;61(13):1203–13.

    CAS  Google Scholar 

  45. Canal F, Sanchis J, Vicent MJ. Polymer-drug conjugates as nano-sized medicines. Curr Opin Biotech. 2011;22(6):894–900.

    CAS  PubMed  Google Scholar 

  46. Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012;90(11–12):381–7.

    CAS  PubMed  Google Scholar 

  47. Hoffman AS, Stayton PS. Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci. 2007;32(8–9):922–32.

    CAS  Google Scholar 

  48. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    CAS  PubMed  Google Scholar 

  49. Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater. 2012;24(5):840–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Rowinsky EK, Rizzo J, Ochoa L, Takimoto CH, Forouzesh B, Schwartz G, et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol. 2003;21(1):148–57.

    CAS  PubMed  Google Scholar 

  51. Kainthan RK, Hester SR, Levin E, Devine DV, Brooks DE. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials. 2007;28(31):4581–90.

    CAS  PubMed  Google Scholar 

  52. Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG-epirubicin conjugates with high drug loading. J Bioact Compat Pol. 2005;20(3):213–30.

    CAS  Google Scholar 

  53. Singer JW. Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. J Control Release. 2005;109(1–3):120–6.

    CAS  PubMed  Google Scholar 

  54. Lu ZR. Molecular imaging of HPMA copolymers: visualizing drug delivery in cell, mouse and man. Adv Drug Deliver Rev. 2010;62(2):246–57.

    CAS  Google Scholar 

  55. Wang Y, Ye F, Jeong E-K, Sun Y, Parker DL, Lu ZR. Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly N-(2-hydroxypropyl)methacrylamide in mice using contrast enhanced MRI. Pharm Res. 2007;24(6):1208–16.

    CAS  PubMed  Google Scholar 

  56. Lammers T, Subr V, Peschke P, Kuhnlein P, Hennink WE, Ulbrich K, et al. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Brit J Cancer. 2008;99(6):900–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood). 2009;234(2):123–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–16.

    CAS  PubMed  Google Scholar 

  59. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Tr. 2008;108(2):241–50.

    CAS  Google Scholar 

  60. Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J Control Release. 2004;96(1):37–53.

    CAS  PubMed  Google Scholar 

  61. Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials. 2009;30(31):6358–66.

    CAS  PubMed  Google Scholar 

  62. Gillies ER, Frechet JMJ. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem. 2005;16(2):361–8.

    CAS  Google Scholar 

  63. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8–9):962–90.

    CAS  Google Scholar 

  64. Xiong J, Meng F, Wang C, Cheng R, Liu Z, Zhong Z. Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. J Mater Chem. 2011;21(15):5786–94.

    CAS  Google Scholar 

  65. Kim Y, Pourgholami MH, Morris DL, Stenzel MH. Triggering the fast release of drugs from crosslinked micelles in an acidic environment. J Mater Chem. 2011;21(34):12777–83.

    CAS  Google Scholar 

  66. Kim Y, Pourgholami MH, Morris DL, Stenzel MH. Effect of cross-linking on the performance of micelles as drug delivery carriers: a cell uptake study. Biomacromolecules. 2012;13(3):814–25.

    CAS  PubMed  Google Scholar 

  67. Lee S-Y, Kim S, Tyler JY, Park K, Cheng J-X. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials. 2013;34(2):552–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Lu J, Ma S, Sun J, Xia C, Liu C, Wang Z, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials. 2009;30(15):2919–28.

    CAS  PubMed  Google Scholar 

  69. Liu G, Wang Z, Lu J, Xia C, Gao F, Gong Q, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials. 2011;32(2):528–37.

    PubMed  Google Scholar 

  70. Su H, Liu Y, Wang D, Wu C, Xia C, Gong Q, et al. Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials. 2013;34(4):1193–203.

    CAS  PubMed  Google Scholar 

  71. Wang Z, Liu G, Sun J, Wu B, Gong Q, Song B, et al. Self-assembly of magnetite nanocrystals with amphiphilic polyethylenimine: structures and applications in magnetic resonance Imaging. J Nanosci Nanotechno. 2009;9(1):378–85.

    CAS  Google Scholar 

  72. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm. 2009;6(2):581–92.

    CAS  PubMed  Google Scholar 

  73. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    CAS  PubMed  Google Scholar 

  74. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    CAS  PubMed  Google Scholar 

  75. Qin SH, Geng Y, Discher DE, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv Mater. 2006;18(21):2905–9.

    CAS  Google Scholar 

  76. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.

    CAS  PubMed  Google Scholar 

  77. O’Reilly RK, Joralemon MJ, Wooley KL, Hawker CJ. Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem Mater. 2005;17(24):5976–88.

    Google Scholar 

  78. Wang D, Su H, Liu Y, Wu C, Xia C, Sun J, et al. Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Chinese Sci Bull. 2012;57(31):4012–8.

    CAS  Google Scholar 

  79. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6(11):2427–30.

    CAS  PubMed  Google Scholar 

  80. Kessinger CW, Khemtong C, Togao O, Takahashi M, Sumer BD, Gao JM. In vivo angiogenesis imaging of solid tumors by αvβ3-targeted, dual-modality micellar nanoprobes. Exp Biol Med (Maywood). 2010;235(8):957–65.

    CAS  PubMed  Google Scholar 

  81. AlJamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts Chem Res. 2011;44(10):1094–104.

    CAS  Google Scholar 

  82. Harris L, Batist G, Belt R, Rovira D, Navari R, Azarnia N, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.

    CAS  PubMed  Google Scholar 

  83. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    CAS  PubMed  Google Scholar 

  84. Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Disc. 2010;13(1):111–23.

    CAS  Google Scholar 

  85. Wang HJ, Wang S, Liao ZY, Zhao PQ, Su WY, Niu RF, et al. Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int J Pharmaceut. 2012;430(1–2):342–9.

    CAS  Google Scholar 

  86. Mylonopoulou E, Arvanitis CD, Bazan-Peregrino M, Arora M, Coussios CC. Ultrasonic activation of thermally sensitive liposomes. 9th International Symposium on Therapeutic Ultrasound. 2010; 1215: 83–87

  87. Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, et al. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials. 2013;34(4):1179–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Kenny GD, Kamaly N, Kalber TL, Brody LP, Sahuri M, Shamsaei E, et al. Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release. 2011;149(2):111–6.

    CAS  PubMed  Google Scholar 

  89. Petersen AL, Binderup T, Jolck RI, Rasmussen P, Henriksen JR, Pfeifer AK, et al. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Control Release. 2012;160(2):254–63.

    CAS  PubMed  Google Scholar 

  90. Na K, Lee SA, Jung SH, Shin BC. Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics. Colloid and Surface B. 2011;84(1):82–7.

    CAS  Google Scholar 

  91. Fattahi H, Laurent S, Liu F, Arsalani N, Elst LV, Muller RN. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine. 2011;6(3):529–44.

    CAS  PubMed  Google Scholar 

  92. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2010;142(1):108–21.

    CAS  PubMed  Google Scholar 

  93. Lo S-T, Kumar A, Hsieh J-T, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm. 2013;10(3):793–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev. 2004;33(1):43–63.

    CAS  PubMed  Google Scholar 

  95. Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40(1):173–90.

    CAS  PubMed  Google Scholar 

  96. Thomas TP, Huang BH, Choi SK, Silpe JE, Kotlyar A, Desai AM, et al. Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Mol Pharm. 2012;9(9):2669–76.

    CAS  PubMed  Google Scholar 

  97. Luo K, Liu G, She W, Wang Q, Wang G, He B, et al. Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials. 2011;32(31):7951–60.

    CAS  PubMed  Google Scholar 

  98. Luo K, Liu G, He B, Wu Y, Gong Q, Song B, et al. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes. Biomaterials. 2011;32(10):2575–85.

    CAS  PubMed  Google Scholar 

  99. Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19(20):3163–6.

    CAS  Google Scholar 

  100. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3.

    CAS  PubMed  Google Scholar 

  101. Zhao Y, Li Y, Song Y, Jiang W, Wu Z, Wang YA, et al. Architecture of stable and water-soluble CdSe/ZnS core-shell dendron nanocrystals via ligand exchange. J Colloid Interface Sci. 2009;339(2):336–43.

    CAS  PubMed  Google Scholar 

  102. Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, et al. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci. 2011;363(1):403–9.

    CAS  PubMed  Google Scholar 

  103. Wen SH, Li KG, Cai HD, Chen Q, Shen MW, Huang YP, et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials. 2013;34(5):1570–80.

    CAS  PubMed  Google Scholar 

  104. Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, et al. Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjugate Chem. 2011;22(9):1784–92.

    CAS  Google Scholar 

  105. Pan BF, Cui DX, Sheng Y, Ozkan CG, Gao F, He R, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67(17):8156–63.

    CAS  PubMed  Google Scholar 

  106. Merkel OM, Mintzer MA, Librizzi D, Samsonova O, Dicke T, Sproat B, et al. Triazine dendrimers as nonviral vectors for in vitro and in vivo RNAi: the effects of peripheral groups and core structure on biological activity. Mol Pharm. 2010;7(4):969–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Yu TZ, Liu XX, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, et al. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angewandte Chemie-International Edition. 2012;51(34):8478–84.

    CAS  Google Scholar 

  108. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.

    CAS  PubMed  Google Scholar 

  109. Boyle P, Levin, B. World Cancer Report. World Health Organization Press. 2008.

  110. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384(3):620–30.

    CAS  PubMed  Google Scholar 

  111. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.

    CAS  PubMed  Google Scholar 

  112. Gong J, Chen MW, Zheng Y, Wang SP, Wang YT. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23.

    CAS  PubMed  Google Scholar 

  113. Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 2012;33(11):3071–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med. 2004;51(6):1153–62.

    CAS  PubMed  Google Scholar 

  115. de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release. 2011;150(1):102–10.

    PubMed  Google Scholar 

  116. Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperther. 2011;27(2):140–55.

    CAS  Google Scholar 

  117. Kato Y, Artemov D. Monitoring of release of cargo from nanocarriers by MRI/MR spectroscopy (MRS): significance of T 2/T 2 * effect of iron particles. Magn Reson Med. 2009;61(5):1059–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Accounts Chem Res. 2011;44(10):1029–38.

    CAS  Google Scholar 

  119. Onuki Y, Jacobs I, Artemov D, Kato Y. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique. Biomaterials. 2010;31(27):7132–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tagami T, Foltz WD, Ernsting MJ, Lee CM, Tannock IF, May JP, et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials. 2011;32(27):6570–8.

    CAS  PubMed  Google Scholar 

  121. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  122. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.

    CAS  PubMed  Google Scholar 

  123. Kaida S, Cabral H, Kumagai M, Kishimura A, Terada Y, Sekino M, et al. Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res. 2010;70(18):7031–41.

    CAS  PubMed  Google Scholar 

  124. Phillips WT, Goins B, Bao A, Vargas D, Guttierez JE, Trevino A, et al. Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro-Oncology. 2012;14(4):416–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Folkman J. Tumor angiogenesis: therapeutic implications. New Engl J Med. 1971;285(21):1182–6.

    CAS  PubMed  Google Scholar 

  126. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. New Engl J Med. 1991;324(1):1–8.

    CAS  PubMed  Google Scholar 

  127. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    CAS  PubMed  Google Scholar 

  128. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35.

    CAS  PubMed  Google Scholar 

  129. Underiner TL, Ruggeri B, Gingrich DE. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr Med Chem. 2004;11(6):731–45.

    CAS  PubMed  Google Scholar 

  130. Zhang F, Huang X, Zhu L, Guo N, Niu G, Swierczewska M, et al. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials. 2012;33(21):5414–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Liu G, Xie J, Zhang F, Wang Z, Luo K, Zhu L, et al. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small. 2011;7(19):2742–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Update a report from the American Heart Association. Circulation. 2011;123(4):E18–E209.

    PubMed  Google Scholar 

  133. Shaw SY. Molecular imaging in cardiovascular disease: targets and opportunities. Nat Rev Cardiology. 2009;6(9):569–79.

    CAS  Google Scholar 

  134. Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123(4):425–43.

    PubMed Central  PubMed  Google Scholar 

  135. McCarthy JR. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv Drug Deliver Rev. 2010;62(11):1023–30.

    CAS  Google Scholar 

  136. Bowey K, Tanguay J-F, Tabrizian M. Liposome technology for cardiovascular disease treatment and diagnosis. Expert Opin Drug Del. 2012;9(2):249–65.

    CAS  Google Scholar 

  137. Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS, et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007;244(1):64–77.

    PubMed  Google Scholar 

  138. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol. 1999;30(8):919–25.

    CAS  PubMed  Google Scholar 

  139. Moreno PR, Purushothaman R, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation. 2004;110(14):2032–8.

    PubMed  Google Scholar 

  140. Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny TV. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Bri J Surg. 2001;88(7):945–50.

    CAS  Google Scholar 

  141. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. New Engl J Med. 2003;349(24):2316–25.

    CAS  PubMed  Google Scholar 

  142. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial αvβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscl Throm Vas. 2006;26(9):2103–9.

    CAS  Google Scholar 

  143. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    CAS  PubMed  Google Scholar 

  144. Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116(9):1052–61.

    PubMed  Google Scholar 

  145. Lobatto ME, Fayad ZA, Silvera S, Vucic E, Calcagno C, Mani V, et al. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm. 2010;7(6):2020–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New Engl J Med. 2003;349(14):1315–23.

    CAS  PubMed  Google Scholar 

  147. Braun RM, Cheng J, Parsonage EE, Moeller J, Winograd N. Surface and depth profiling investigation of a drug-loaded copolymer utilized to coat Taxus Express(2) stents. Anal Chem. 2006;78(24):8347–53.

    CAS  PubMed  Google Scholar 

  148. Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent implications for rational therapy of restenosis. Circulation. 2002;106(22):2842–7.

    CAS  PubMed  Google Scholar 

  149. Tran TD, Caruthers SD, Hughes M, Marsh JN, Cyrus T, Winter PM, et al. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomed. 2007;2(4):515–26.

    CAS  Google Scholar 

  150. Myerson J, He L, Lanza G, Tollefsen D, Wickline S. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J Thromb Haemost. 2011;9(7):1292–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, et al. Intramural delivery of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscl Throm Vas. 2008;28(5):820–6.

    CAS  Google Scholar 

  152. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7(9):7442–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments And Disclosures

The work was supported by National Key Basic Research Program of China (2013CB933903), National Key Technology R&D Program (2012BAI23B08), Doctoral Fund of Ministry of Education of China (20090181110068) and National Natural Science Foundation of China (20974065, 51173117 and 50830107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Lin, B. & Ai, H. Theranostic Nanoparticles for Cancer and Cardiovascular Applications. Pharm Res 31, 1390–1406 (2014). https://doi.org/10.1007/s11095-013-1277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1277-z

Keywords

Navigation