Skip to main content

Theranostics Nanoformulations: Merging Diagnostics and Nanotherapeutics

  • Chapter
  • First Online:
Nanoformulations in Human Health

Abstract

Since the emergence of the concept of theranostics in 1998, the field has constantly evolved. With a unique amalgamation of diagnostic and therapeutic applications, theranostics has gained profound attention from researchers worldwide. More recently, researchers have attempted to augment the paradigm with the concept of “nanotheranostics,” which offers multimodal medical and biomedical applications. “Nanotheranostics” are specially devised drug delivery systems/nanoformulations that comprise nanocarriers/nanoparticles for theranostics applications. “Nanotheranostics” confers special attributes to theranostics, thereby potentiating their efficacy. Spurred on by advances in material chemistry and nanoformulations, scientists have exploited distinctive electrical, magnetic and optical properties of several types of nanocarriers for theranostics applications. The present chapter discusses the nanocarriers of several types for diverse applications in disease state monitoring, treatment monitoring, personalized medicine, image-guided drug delivery, molecular imaging and pharmacogenomics. Besides offering the above-stated advantages, nanotheranostics can offer a safer and more efficient therapy to the patients, obviating redundant treatment and saving overall cost of therapy. Other aspects such as biological processes governing theranostics fundamentals, their applications in several diseases and medical conditions, regulatory aspects, commercial aspects and future perspectives have been discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CEO:

Chief executive officer

Cy5:

Cyanine 5

E. coli :

Escherichia coli

MUC1:

Mucin1

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

RBCs:

Red blood cells

ROS:

Reactive oxygen species

US:

United States of America

USD:

United states dollar

UV:

Ultraviolet

References

  • Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S (2018) Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnol 16(1):80

    CAS  Google Scholar 

  • Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM, Ramezani M, Abnous K (2018) Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 549(1–2):67–75

    CAS  PubMed  Google Scholar 

  • Bertucci A, Silvestrini S, Corradini R, De Cola L (2018) Loading of PNA and other molecular payloads on inorganic nanostructures for theranostics. In DNA nanotechnology 1811:65–77

    CAS  Google Scholar 

  • Bulte JW, Modo MM (2008) Introduction: the emergence of nanoparticles as imaging platform in biomedicine. In Nanoparticles in biomedical imaging, Springer, New York, NY 102:1–5

    Google Scholar 

  • Chambre L, Degirmenci A, Sanyal R, Sanyal A (2018) Multi-functional nanogels as theranostic platforms: exploiting reversible and nonreversible linkages for targeting, imaging, and drug delivery. Bioconjug Chem 29(6):1885–1896

    CAS  PubMed  Google Scholar 

  • Chang CH, Tsai IC, Chiang CJ, Chao YP (2019) A theranostic approach to breast cancer by a quantum dots-and magnetic nanoparticles-conjugated peptide. J Taiwan Inst Chem Eng 97:88–95

    CAS  Google Scholar 

  • Cipreste MF, de Rezende MR, Hneda ML, Peres AM, Cotta AAC, de Carvalho Teixeira V, de Almeida Macedo WA, de Sousa EMB (2018) Functionalized-radiolabeled hydroxyapatite/tenorite nanoparticles as theranostic agents for osteosarcoma. Ceram Int 44(15):17800–17811

    CAS  Google Scholar 

  • Dai L, Jones CM, Chan WTK, Pham TA, Ling X, Gale EM, Rotile NJ, Tai WCS, Anderson CJ, Caravan P, Law GL (2018) Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat Commun 9(1):857

    PubMed  PubMed Central  Google Scholar 

  • Datta NR, Krishnan S, Speiser DE, Neufeld E, Kuster N, Bodis S, Hofmann H (2016) Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano) bullet” for cancer theranostics? Cancer Treat Rev 50:217–227

    CAS  PubMed  Google Scholar 

  • Dumortier J, Decullier E, Hilleret MN, Bin-Dorel S, Valette PJ, Boillot O, Partensky C, Letoublon C, Ducerf C, Leroy V, Vuillez JP (2014) Adjuvant intraarterial lipiodol or 131I-lipiodol after curative treatment of hepatocellular carcinoma: a prospective randomized trial. J Nucl Med 55(6):877–883

    CAS  PubMed  Google Scholar 

  • Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z (2018) Magnetite-gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 8(1):11295

    PubMed  PubMed Central  Google Scholar 

  • Emi T, Michaud K, Orton E, Santilli G, Linh C, O’Connell M, Issa F, Kennedy S (2019) Ultrasonic generation of pulsatile and sequential therapeutic delivery profiles from calcium-crosslinked alginate hydrogels. Molecules 24(6):1048

    CAS  PubMed Central  Google Scholar 

  • Engberink RDO, Van Der Pol SM, Walczak P, Van Der Toorn A, Viergever MA, Dijkstra CD, Bulte JW, De Vries HE, Blezer EL (2010) Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol Imaging 9(5):7290–2010

    Google Scholar 

  • Erkoc P, Yasa I, Ceylan H, Yasa O, Alapan Y, Metin Sitti M (2019) Mobile microrobots for active therapeutic delivery. Adv Ther 2(1):1800064

    Google Scholar 

  • Evangelopoulos M, Parodi A, Martinez J, Tasciotti E (2018) Trends towards biomimicry in theranostics. Nanomaterials 8(9):637

    PubMed Central  Google Scholar 

  • Fernandes RS, Silva JO, Mussi SV, Lopes SC, Leite EA, Cassali GD, Cardoso VN, Townsend DM, Colletti PM, Ferreira LA, Rubello D (2018) Nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid as a theranostic agent: evaluation of biodistribution and antitumor activity in experimental model. Mol Imaging Biol 20(3):437–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiegel V, Harlepp S, Begin-Colin S, Begin D, Mertz D (2018) Design of protein-coated carbon nanotubes loaded with hydrophobic drugs through sacrificial templating of mesoporous silica shells. Chem Eur J 24(18):4662–4670

    CAS  PubMed  Google Scholar 

  • Gallicchio R, Nardelli A, Mainenti P, Nappi A, Capacchione D, Simeon V, Sirignano C, Abbruzzi F, Barbato F, Landriscina M, Storto G (2016) Therapeutic strategies in HCC: radiation modalities. Biomed Res Int 2016:1295329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gholami L, Tafaghodi M, Abbasi B, Daroudi M, Kazemi Oskuee R (2019) Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J Cell Physiol 234(2):1547–1559

    CAS  PubMed  Google Scholar 

  • Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. In Seminars in nuclear medicine, WB Saunders 40(2):122–135

    Google Scholar 

  • González-Prieto C, Lesser CF (2018) Rationale redesign of type III secretion systems: toward the development of non-pathogenic E. coli for in vivo delivery of therapeutic payloads. Curr Opin Microbiol 41:1–7

    PubMed  Google Scholar 

  • Gyawali D, Kim JP, Yang J (2018) Highly photostable nanogels for fluorescence-based theranostics. Bioactive Mater 3(1):39–47

    Google Scholar 

  • He K, Ran H, Su Z, Wang Z, Li M, Hao L (2019) Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int J Nanomedicine 14:519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nature Biomed Eng 1(1):0010

    CAS  Google Scholar 

  • Hu P, Wu T, Fan W, Chen L, Liu Y, Ni D, Bu W, Shi J (2017) Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 141:86–95

    PubMed  Google Scholar 

  • Huang H, Dong Y, Zhang Y, Ru D, Wu Z, Zhang J, Shen M, Duan Y, Sun Y (2019) GSH-sensitive Pt (IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics 9(4):1047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idée JM, Louguet S, Ballet S, Corot C (2013) Theranostics and contrast-agents for medical imaging: a pharmaceutical company viewpoint. Quant Imaging Med Surg 3(6):292

    PubMed  PubMed Central  Google Scholar 

  • Jędrzak A, Grześkowiak BF, Coy E, Wojnarowicz J, Szutkowski K, Jurga S, Jesionowski T, Mrówczyński R (2019) Dendrimer based theranostic nanostructures for combined chemo-and photothermal therapy of liver cancer cells in vitro. Colloids Surf B: Biointerfaces 173:698–708

    PubMed  Google Scholar 

  • Jin G, He R, Liu Q, Lin M, Dong Y, Li K, Tang BZ, Liu B, Xu F (2019) Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics 9(1):246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumeria T, McInnes SJ, Maher S, Santos A (2017) Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin Drug Deliv 14(12):1407–1422

    CAS  PubMed  Google Scholar 

  • Liu Y, Liu Y, Bu W, Xiao Q, Sun Y, Zhao K, Fan W, Liu J, Shi J (2015) Radiation−/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials 49:1–8

    CAS  PubMed  Google Scholar 

  • Liu Y, Nie L, Chen X (2016) Photoacoustic molecular imaging: from multiscale biomedical applications towards early-stage theranostics. Trends Biotechnol 34(5):420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Xiao W, Hu C, Xie R, Gao H (2018) Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release 278:127–139

    CAS  PubMed  Google Scholar 

  • Marchetti C, Palaia I, Giorgini M, De Medici C, Iadarola R, Vertechy L, Domenici L, Di Donato V, Tomao F, Muzii L, Panici PB (2014) Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. Onco Targets Ther 7:1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matteson EL, Lowe VJ, Prendergast FG, Crowson CS, Moder KG, Morgenstern DE, Messmann RA, Low PS (2009) Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical Folatescan™. Clin Exp Rheumatol 27(2):253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ML, Shizuka M, Wilhelm A, Salomon P, Reid EE, Lanieri L, Sikka S, Maloney EK, Harvey L, Qiu Q, Archer KE (2018) A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of antibody–drug conjugates (ADCs). Mol Cancer Ther 17(3):650–660

    CAS  PubMed  Google Scholar 

  • Misra C, Yadav AB, Verma RK (2018) Carbon-based nanofibers: fullerenes, diamond, and carbon nanostructures. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer, Cham, pp 1–14

    Google Scholar 

  • Nagel G, Tschiche HR, Wedepohl S, Calderón M (2018) Modular approach for theranostic polymer conjugates with activatable fluorescence: impact of linker design on the stimuli-induced release of doxorubicin. J Control Release 285:200–211

    CAS  PubMed  Google Scholar 

  • Näkki S, Martinez JO, Evangelopoulos M, Xu W, Lehto VP, Tasciotti E (2017) Chlorin e6 functionalized theranostic multistage nanovectors transported by stem cells for effective photodynamic therapy. ACS Appl Mater Interfaces 9(28):23441–23449

    PubMed  PubMed Central  Google Scholar 

  • Naveed F, Fisher R, Engel JS, Lu J, Low P, Amato RJ (2004) Folate-scan in subjects with suspected metastatic renal cell carcinoma. J Clin Oncol 22(14):4751–4751

    Google Scholar 

  • Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75(5):465–474

    CAS  PubMed  Google Scholar 

  • Ortega-Liebana MC, Encabo-Berzosa MM, Casanova A, Pereboom MD, Alda O, Hueso JL, Santamaria J (2019) Upconverting carbon nanodots from EDTA as near-infrared activated phototheranostic agents. Chem Eur J 25(21):5539–5546

    CAS  PubMed  Google Scholar 

  • Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13(6):1266–1276

    PubMed  Google Scholar 

  • Rong P, Huang P, Liu Z, Lin J, Jin A, Ma Y, Niu G, Yu L, Zeng W, Wang W, Chen X (2015) Protein-based photothermal theranostics for imaging-guided cancer therapy. Nanoscale 7(39):16330–16336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr TM, Khowessah OM, Motaleb MA, El-Bary AA, El-Kolaly MT, Swidan MM (2018) I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci 122:239–245

    CAS  PubMed  Google Scholar 

  • Segars W Paul et al (2018) Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. IEEE Transactions on Medical Imaging 37(3): 680–92

    Google Scholar 

  • Shen MY, Liu TI, Yu TW, Kv R, Chiang WH, Tsai YC, Chen HH, Lin SC, Chiu HC (2019) Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials 197:86–100

    CAS  PubMed  Google Scholar 

  • Shervedani RK, Foroushani MS, Kefayat A, Torabi M, Rahsepar FR (2018) Construction and characterization of a theranostic system based on graphene/manganese chelate. Biosens Bioelectron 117:794–801

    Google Scholar 

  • Su G, Miao D, Yu Y, Zhou M, Jiao P, Cao X, Yan B, Zhu H (2019) Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy. J Drug Target 27(2):201–210

    CAS  PubMed  Google Scholar 

  • Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, Torchilin VP (2018) Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 170:26–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usman M, Hussein M, Kura A, Fakurazi S, Masarudin M, Ahmad Saad F (2018) Graphene oxide as a nanocarrier for a theranostics delivery system of protocatechuic acid and gadolinium/gold nanoparticles. Molecules 23(2):500

    PubMed Central  Google Scholar 

  • Victor SP, Paul W, Sharma CP (2018) Calcium phosphate nanoplatforms for drug delivery and theranostic applications. In: Drug delivery nanosystems for biomedical applications. Sharma CP, Elsevier, pp 163–179

    Google Scholar 

  • Wang C, Xue R, Gulzar A, Kuang Y, Shao H, Gai S, Yang D, He F, Yang P (2019) Targeted and imaging-guided chemo-photothermal ablation achieved by combining upconversion nanoparticles and protein-capped gold nanodots. Chem Eng J 370:1239–1250

    CAS  Google Scholar 

  • Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology. BioDrugs 19(3):145–163

    CAS  PubMed  Google Scholar 

  • Wu Z, de Ávila BEF, Martín A, Christianson C, Gao W, Thamphiwatana SK, Escarpa A, He Q, Zhang L, Wang J (2015) RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 7(32):13680–13686

    CAS  PubMed  Google Scholar 

  • Wyszogrodzka G, Dorożyński P, Gil B, Roth WJ, Strzempek M, Marszałek B, Węglarz WP, Menaszek E, Strzempek W, Kulinowski P (2018) Iron-based metal-organic frameworks as a Theranostic carrier for local tuberculosis therapy. Pharm Res 35(7):144

    PubMed  PubMed Central  Google Scholar 

  • You, Chaoqun, et al. (2018) Near Infrared Radiated Stimulus-Responsive Liposomes Based on Photothermal Conversion as Drug Carriers for Co-Delivery of CJM126 and Cisplatin. Materials Science and Engineering C 80: 362–70

    Google Scholar 

  • Zhang K, Zhang Y, Meng X, Lu H, Chang H, Dong H, Zhang X (2018) Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials 185:301–309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support (Major Research Project) from Nirma University (NU/Ph.D./Major Res Pro/IP/16-17/669). Mr. Shubham Khot and Ms. Shruti Rawal are also thankful to Nirma University for providing the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khot, S., Rawal, S.U., Patel, M.M. (2020). Theranostics Nanoformulations: Merging Diagnostics and Nanotherapeutics. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_4

Download citation

Publish with us

Policies and ethics