Skip to main content

Advertisement

Log in

Multicompartimental Nanoparticles for Co-Encapsulation and Multimodal Drug Delivery to Tumor Cells and Neovasculature

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this work was the development of a multicompartimental nanocarrier for the simultaneous encapsulation of paclitaxel (PTX) and genistein (GEN), associating antiangiogenic and cytotoxic properties in order to potentiate antitumoral activity.

Method

Polymeric nanocapsules containing PTX were obtained by interfacial deposition of preformed polymer and coated with a phospholipid bilayer entrapping GEN. Physical-chemical and morphological characteristics were characterized, including size and size distribution, drug entrapment efficiency and drug release profile. In vivo studies were performed in EAT bearing Swiss mice.

Results

Entrapment efficiency for both drugs in the nanoparticles was approximately 98%. Average particle diameter was 150 nm with a monomodal distribution. In vitro assays showed distinct temporal drug release profiles for each drug. The dose of 0.2 mg/kg/day of PTX resulted in 11% tumor inhibition, however the association of 12 mg/kg/day of GEN promoted 44% tumor inhibition and a 58% decrease in VEGF levels.

Conclusions

Nanoparticles containing GEN and PTX with a temporal pattern of drug release indicated that the combined effect of cytotoxic and antiangiogenic drugs present in the formulation contributed to the overall enhanced antitumor activity of the nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BS:

Backscattering

CCT:

Capric/caprylic triglyceride

EAT:

Ehrlich ascites tumor

EE:

Encapsulation efficiency

FDA:

Food and drug administration

GEN:

Genistein

HPLC:

High performance liquid chromatography

i.p.:

Intra peritoneal

NC:

Uncoated nanoparticles

NC-PC:

Coated nanoparticles

NP:

Nanoparticles

NTA:

Nanoparticle tracking analysis

PBS:

Phosphate buffered saline

PdI:

Polydispersity index

PLGA:

Poly(lactic-co-glycolic acid)

PTX:

Paclitaxel

PVDF:

Polyvinylidene difluoride

SLS:

Sodium lauryl sulfate

T:

Transmission

TEM:

Transmission electron microscopy

VEGF:

Vascular endothelial growth factor

REFERENCES

  1. Uramoto H, Nakanishi R, Nagashima A, Uchiyama A, Inoue M, Osaki T, et al. A randomized phase II trial of adjuvant chemotherapy with bi-weekly carboplatin plus paclitaxel versus carboplatin plus gemcitabine in patients with completely resected non-small cell lung cancer. Anticancer Res. 2010;30(11):4695–9.

    CAS  PubMed  Google Scholar 

  2. Pishvaian MJ, Slack R, Koh EY, Beumer JH, Hartley ML, Cotarla I, et al. A phase I clinical trial of the combination of imatinib and paclitaxel in patients with advanced or metastatic solid tumors refractory to standard therapy. Cancer Chemother Pharmacol. 2012;70(6):843–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Feng S-S, Zhao L, Zhang Z, Bhakta G, Yin Win K, Dong Y, et al. Chemotherapeutic engineering: vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chem Eng Sci. 2007;62(23):6641–8.

    Article  CAS  Google Scholar 

  4. Burris 3rd HA, Dowlati A, Moss RA, Infante JR, Jones SF, Spigel DR, et al. Phase I study of pazopanib in combination with paclitaxel and carboplatin given every 21 days in patients with advanced solid tumors. Mol Cancer Ther. 2012;11(8):1820–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794–803.

    Article  CAS  PubMed  Google Scholar 

  7. Alberts DS, Blessing JA, Landrum LM, Warshal DP, Martin LP, Rose SL, et al. Phase II trial of nab-paclitaxel in the treatment of recurrent or persistent advanced cervix cancer: a gynecologic oncology group study. Gynecol Oncol. 2012;127(3):451–5.

    Article  CAS  PubMed  Google Scholar 

  8. Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, et al. nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2012;2(3):260–9.

    Article  CAS  PubMed  Google Scholar 

  9. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76.

    Article  CAS  PubMed  Google Scholar 

  10. Cella D, Wang M, Wagner L, Miller K. Survival-adjusted health-related quality of life (HRQL) among patients with metastatic breast cancer receiving paclitaxel plus bevacizumab versus paclitaxel alone: results from Eastern Cooperative Oncology Group Study 2100 (E2100). Breast Cancer Res Treat. 2011;130(3):855–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang Z, Chui WK, Ho PC. Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res. 2011;28(3):585–96.

    Article  PubMed  Google Scholar 

  12. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release. 2006;116(2):150–8.

    Article  CAS  PubMed  Google Scholar 

  13. Guo C, Liu S, Dai Z, Jiang C, Li W. Polydiacetylene vesicles as a novel drug sustained-release system. Colloids Surf B: Biointerfaces. 2010;76(1):362–5.

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Wang Y, Fan M, Luo F, Qian Z. Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Int J Pharm. 2011;414(1–2):251–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X, et al. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci. 2007;10(3):350–7.

    CAS  PubMed  Google Scholar 

  16. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281–90.

    Article  CAS  PubMed  Google Scholar 

  17. Cosco D, Paolino D, Maiuolo J, Russo D, Fresta M. Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy. Drug Deliv Transl Res. 2011;1:66–75.

    Article  CAS  Google Scholar 

  18. Bamias A, Pignata S, Pujade-Lauraine E. Angiogenesis: a promising therapeutic target for ovarian cancer. Crit Rev Oncol Hematol. 2012.

  19. El-Azab M, Hishe H, Moustafa Y, el El-Awady S. Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur J Pharmacol. 2011;652(1–3):7–14.

    Article  CAS  PubMed  Google Scholar 

  20. Sheela ML, Ramakrishna MK, Salimath BP. Angiogenic and proliferative effects of the cytokine VEGF in Ehrlich ascites tumor cells is inhibited by Glycyrrhiza glabra. Int Immunopharmacol. 2006;6(3):494–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Ho PC. Self-assembled core-shell vascular-targeted nanocapsules for temporal antivasculature and anticancer activities. Small. 2010;6(22):2576–83.

    Article  CAS  PubMed  Google Scholar 

  22. Su SJ, Yeh TM, Chuang WJ, Ho CL, Chang KL, Cheng HL, et al. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol. 2005;69(2):307–18.

    Article  CAS  PubMed  Google Scholar 

  23. Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 2010;29(3):465–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yu X, Zhu J, Mi M, Chen W, Pan Q, Wei M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med Oncol. 2012;29(1):349–57.

    Article  CAS  PubMed  Google Scholar 

  25. Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell. 2004;5(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hwang JT, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005;332(2):433–40.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH. Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res. 2006;66(9):4816–25.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, Shi ZL, Liu B, Yan XB, Feng J, Tao HM. Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-kappaB. Anticancer Drugs. 2010;21(3):288–96.

    Article  CAS  PubMed  Google Scholar 

  29. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mengual O, Meunier G, Cayre I, Puech K, Snabre P. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50(2):445–56.

    Article  CAS  PubMed  Google Scholar 

  31. Nogueira IA, Leao AB, Vieira Mde S, Benfica PL, da Cunha LC, Valadares MC. Antitumoral and antiangiogenic activity of Synadenium umbellatum Pax. J Ethnopharmacol. 2008;120(3):474–8.

    Article  PubMed  Google Scholar 

  32. Teicher BA, Sotomayor EA, Huang ZD. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res. 1992;52(23):6702–4.

    CAS  PubMed  Google Scholar 

  33. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67(8):3560–4.

    Article  CAS  PubMed  Google Scholar 

  34. Casneuf VF, Demetter P, Boterberg T, Delrue L, Peeters M, Van Damme N. Antiangiogenic versus cytotoxic therapeutic approaches in a mouse model of pancreatic cancer: an experimental study with a multitarget tyrosine kinase inhibitor (sunitinib), gemcitabine and radiotherapy. Oncol Rep. 2009;22(1):105–13.

    CAS  PubMed  Google Scholar 

  35. Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, et al. Intratumoral delivery of paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS PharmSciTech. 2009;10(2):410–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mo Y, Lim LY. Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release. 2005;108(2–3):244–62.

    Article  CAS  PubMed  Google Scholar 

  37. Vargas BA, Bidone J, Oliveira LK, Koester LS, Bassani VL, Teixeira HF. Development of topical hydrogels containing genistein-loaded nanoemulsions. J Biomed Nanotechnol. 2012;8(2):330–6.

    Article  PubMed  Google Scholar 

  38. Si HY, Li DP, Wang TM, Zhang HL, Ren FY, Xu ZG, et al. Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nanosci Nanotechnol. 2010;10(4):2325–31.

    Article  CAS  PubMed  Google Scholar 

  39. Zampieri ALTC, Ferreira FS, Resende ÉC, Gaeti MPN, Diniz DGA, Taveira SF, et al. Biodegradable polymeric nanocapsules based on poly(DL-lactide) for genistein topical delivery: obtention, characterization and skin permeation studies. J Biomed Nanotechnol. 2013;9(8):527–34.

    Article  CAS  PubMed  Google Scholar 

  40. Lewis BA, Engelman DM. Lipid bilayer thickness varies linearly with acyl chain-length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983;166(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA. Interactions between neutral phospholipid-bilayer membranes. Biophys J. 1982;37(3):657–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Balgavy P, Dubnickova M, Kucerka N, Kiselev MA, Yaradaikin SP, Uhrikova D. Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: a small-angle neutron scattering study. BBA Biomembr. 2001;1512(1):40–52.

    Article  CAS  Google Scholar 

  43. Lemarchand C, Couvreur P, Vauthier C, Costantini D, Gref R. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int J Pharm. 2003;254(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  44. Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan lab expert analysis of the stability of ethosomes and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B: Biointerfaces. 2009;72(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  45. Go ML, Ngiam TL. Thermodynamics of partitioning of the antimalarial drug mefloquine in phospholipid bilayers and bulk solvents. Chem Pharm Bull. 1997;45(12):2055–60.

    Article  CAS  PubMed  Google Scholar 

  46. Wenk MR, Fahr A, Reszka R, Seelig J. Paclitaxel partitioning into lipid bilayers. J Pharm Sci. 1996;85(2):228–31.

    Article  CAS  PubMed  Google Scholar 

  47. Fahr A, van Hoogevest P, May S, Bergstrand N, Leigh MLS. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26(3–4):251–65.

    Article  CAS  PubMed  Google Scholar 

  48. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm. 2011;415(1–2):34–52.

    Article  CAS  PubMed  Google Scholar 

  49. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  50. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wang Z, Ho PC. A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities. Biomaterials. 2010;31(27):7115–23.

    Article  CAS  PubMed  Google Scholar 

  52. Hartveit F, Halleraker B. Effect of subcutaneous transplants of Ehrlich carcinoma on the survival time of mice with intraperitoneal transplants of the same tumour. J Pathol. 1971;105(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  53. Pasquier E, Honore S, Pourroy B, Jordan MA, Lehmann M, Briand C, et al. Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Res. 2005;65(6):2433–40.

    Article  CAS  PubMed  Google Scholar 

  54. Shchors K, Evan G. Tumor angiogenesis: cause or consequence of cancer? Cancer Res. 2007;67(15):7059–61.

    Article  CAS  PubMed  Google Scholar 

  55. Roskoski Jr R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. 2007;62(3):179–213.

    Article  PubMed  Google Scholar 

  56. Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269(2):226–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 1997;57(18):3924–8.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the Brazilian research funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa da Universidade Federal de Goiás (FUNAPE) and Fundação de Apoio à Pesquisa do Estado de Goiás (FAPEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Martins Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, L.P., Gaeti, M.P.N., de Ávila, P.H.M. et al. Multicompartimental Nanoparticles for Co-Encapsulation and Multimodal Drug Delivery to Tumor Cells and Neovasculature. Pharm Res 31, 1106–1119 (2014). https://doi.org/10.1007/s11095-013-1234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1234-x

KEY WORDS

Navigation