Skip to main content
Log in

A Novel Three-Dimensional Large-Pore Mesoporous Carbon Matrix as a Potential Nanovehicle for the Fast Release of the Poorly Water-soluble Drug, Celecoxib

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel mesocellular carbon foam (MSU-FC) with a large pore size and a three-dimensional porous structure for the oral delivery of poorly water-soluble drugs was prepared. The goal of this study was to improve in vitro dissolution and in vivo absorption of celecoxib (CEB), a model drug, by means of novel carbon-based nanoparticles prepared from the MSU-FC matrix.

Methods

The MSU-FC matrix was synthesized by an inverse replica templating method using mesocellular silica template. A solvent immersion/evaporation method was used to load the drug molecules. The drug-loaded nanoparticles were characterized for morphology, surface area, particle size, mesoporous structure, crystallinity, solubility and dissolution. The effect of MSU-FC on cell viability was measured using the MTT conversion assay. Furthermore, the oral bioavailability of CEB-loaded MSU-FC in fasted rats was compared with that of the marketed product.

Results

Our results demonstrate that CEB incorporation into the prepared MSU-FC resulted in an approximately 9-fold increase in aqueous solubility in comparison with crystalline CEB. MSU-FC produced accelerated immediate release of CEB in comparison with crystalline CEB (pure CEB powder or marketed formulation) and the drug-loaded conventional mesoporous carbon particles. The relative bioavailability of CEB for CEB-loaded MSU-FC was 172%. In addition, MSU-FC nanoparticles exhibited very low toxicity.

Conclusions

The MSU-FC nanomatrix has been shown to be a promising drug delivery vehicle for improving the dissolution and biopharmaceutical characteristics of poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.

    Article  PubMed  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev. 1997;23(1–3):3–25.

    Article  CAS  Google Scholar 

  3. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2001;420(1):1–10.

    Article  Google Scholar 

  4. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  PubMed  Google Scholar 

  5. Huanga LF, Tong WQT. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Del Rev. 2004;56(3):321–34.

    Article  Google Scholar 

  6. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1–2):109–22.

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16(7–8):354–60.

    Article  CAS  PubMed  Google Scholar 

  8. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  9. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.

    Article  CAS  PubMed  Google Scholar 

  10. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.

    Article  CAS  PubMed  Google Scholar 

  11. Eerdenbrugh BV, Mooter GV, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.

    Article  PubMed  Google Scholar 

  12. Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1–2):260–8.

    Article  CAS  PubMed  Google Scholar 

  13. Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Del Rev. 2008;60(6):757–67.

    Article  CAS  Google Scholar 

  14. Kesisoglou F, Panmai S, Wu Y. Nanosizing–Oral formulation development and biopharmaceutical evaluation. Adv Drug Del Rev. 2007;59(7):631–44.

    Article  CAS  Google Scholar 

  15. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, et al. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16(21):1949–66.

    Article  Google Scholar 

  17. Jaganathan H, Godin B. Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev. 2012;64(15):1800–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.

    Article  CAS  PubMed  Google Scholar 

  19. Yang F, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679–98.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505–13.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas MJK, Slipper I, Walunj A, Jain A, Favretto ME, Kallinteri P, et al. Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int J Pharm. 2009;387(1–2):272–7.

    PubMed  Google Scholar 

  22. Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release. 2010;145(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–605.

    Article  CAS  PubMed  Google Scholar 

  24. Wani A, Muthuswamy E, Savithra GHL, Mao G, Brock S, Oupický D. Surface functionalization of mesoporous silica nanoparticles controls loading and release behavior of mitoxantrone. Pharm Res. 2012;29(9):2407–18.

    Article  CAS  PubMed  Google Scholar 

  25. Vignolini S, Yufa NA, Cunha PS, Guldin S, Rushkin I, Stefik M, et al. A 3D optical metamaterial made by self-assembly. Adv Mater. 2012;24(10):23–7.

    Article  Google Scholar 

  26. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8:500–6.

    Article  CAS  PubMed  Google Scholar 

  27. Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem. 2008;47(20):3696–717.

    Article  CAS  Google Scholar 

  28. Wang X, Liu P, Tian Y. Ordered mesoporous carbons for ibuprofen drug loading and release behavior. Micropor Mesopor Mater. 2011;142(1):366–85.

    Google Scholar 

  29. Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm. 2012;80(3):535–43.

    Article  CAS  PubMed  Google Scholar 

  30. Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, et al. Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm. 2007;331(1):133–8.

    Article  PubMed  Google Scholar 

  31. Rosenholm JM, Lindén M. Towards establishing structure-activity relationships for mesoporous silica. J Control Release. 2008;128(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S. Ordered mesoporous materials for drug delivery. Micropor Mesopor Mater. 2009;117(1–2):1–9.

    CAS  Google Scholar 

  33. Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Edit. 2007;46(40):7548–58.

    Article  Google Scholar 

  34. Tatsuda N, Yano K. Pore size control of monodispersed starburst carbon spheres. Carbon. 2013;51:27–35.

    Article  CAS  Google Scholar 

  35. An S, Park JH, Shin CH, Joo J, Ramasamy E, Hwang J, et al. Well-dispersed Pd3Pt1 alloy nanoparticles in large pore size mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. Carbon. 2011;49(4):1108–17.

    Article  CAS  Google Scholar 

  36. Kwak G, Hwang J, Cheon JY, Woo MH, Jun KW, Lee J, et al. Preparation method of Co3O4 nanoparticles using ordered mesoporous carbons as a template and their application for fischer-tropsch synthesis. J Phys Chem C. 2013;117(4):1773–9.

    Article  CAS  Google Scholar 

  37. Dolenc A, Kristl J, Baumgartner S, Planinšek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm. 2009;376(1–2):204–12.

    Article  CAS  PubMed  Google Scholar 

  38. Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297(2):638–45.

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Zhang J, Jiang T, Wang S. Inclusion of the poorly water-soluble drug simvastatin in mesocellular foam nanoparticles: Drug loading and release properties. Int J Pharm. 2011;410(1–2):118–24.

    Article  CAS  PubMed  Google Scholar 

  40. Yan X, He P, Xia Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun. 2009;11(6):1127–30.

    Article  Google Scholar 

  41. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  42. Skinner LM, Sambles JR. The Kelvin equation—a review. J Aerosol Sci. 1972;3(3):199–210.

    Article  CAS  Google Scholar 

  43. Noyes AS, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  44. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor Mesopor Mater. 2004;68(1–3):105–9.

    Article  CAS  Google Scholar 

  45. Cauda V, Muhlstein L, Onida B, Bein T. Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Micropor Mesopor Mater. 2009;118(1–3):435–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and disclosures

This work was generously supported by the National Basic Research Program of China (973 Program) (No.2009CB930300). Dr. David B. Jack is gratefully thanked for correcting English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, H., Li, C. et al. A Novel Three-Dimensional Large-Pore Mesoporous Carbon Matrix as a Potential Nanovehicle for the Fast Release of the Poorly Water-soluble Drug, Celecoxib. Pharm Res 31, 1059–1070 (2014). https://doi.org/10.1007/s11095-013-1227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1227-9

Key words

Navigation