Skip to main content
Log in

Thermodynamic and Fluorescence Analyses to Determine Mechanisms of IgG1 Stabilization and Destabilization by Arginine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate mechanisms governing the stabilization and destabilization of immunoglobulin (IgG1) by arginine (Arg).

Methods

The effects of Arg on the aggregation/degradation, thermodynamic stability, hydrophobicity, and aromatic residues of IgG1 were respectively investigated by size-exclusion chromatography, differential scanning calorimetry, probe fluorescence, and intrinsic fluorescence.

Results

Arg monohydrochloride (Arg–HCl) suppressed IgG1 aggregation at near-neutral pH, but facilitated aggregation and degradation at acidic pH or at high storage temperature. Equimolar mixtures of Arg and aspartic acid (Asp) or glutamic acid (Glu) suppressed aggregation without facilitating degradation even at high temperature. Arg–HCl decreased the thermodynamic stability of IgG1 by enthalpic loss, which was counteracted by using Asp or Glu as a counterion for Arg. The suppression of aggregation by Arg–HCl was well correlated with the decrease in hydrophobicity of IgG1. The intrinsic fluorescence of IgG1 was unaffected by Arg–HCl.

Conclusions

Suppression of IgG1 aggregation can be attributed to the interaction between Arg and hydrophobic residues; on the other hand, facilitation of aggregation and degradation is presumably due to the interaction between Arg and some acidic residues, which could be competitively inhibited by simultaneously adding either Asp or Glu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Arg–Asp:

Arginine–aspartic acid mixture

Arg–Glu:

Arginine–glutamic acid mixture

Arg–HCl:

Arginine monohydrochloride

Bis-ANS:

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt

C p :

Molar heat capacity at constant pressure

DSC:

Differential scanning calorimetry

SEC:

Size-exclusion chromatography

REFERENCES

  1. Wang W, Singh SK, Li N, Toler MR, King KR, Nema S. Immunogenicity of protein aggregates—concerns and realities. Int J Pharm. 2012;431:1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y). 1991;9:157–62.

    Article  CAS  Google Scholar 

  3. Arora D, Khanna N. Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. J Biotechnol. 1996;52:127–33.

    Article  CAS  PubMed  Google Scholar 

  4. Tsumoto K, Umetsu M, Kumagai I, Ejima D, Arakawa T. Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine. Biochem Biophys Res Commun. 2003;312:1383–6.

    Article  CAS  PubMed  Google Scholar 

  5. Umetsu M, Tsumoto K, Nitta S, Adschiri T, Ejima D, Arakawa T, et al. Nondenaturing solubilization of beta2 microglobulin from inclusion bodies by L-arginine. Biochem Biophys Res Commun. 2005;328:189–97.

    Article  CAS  PubMed  Google Scholar 

  6. Arakawa T, Philo JS, Tsumoto K, Yumioka R, Ejima D. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr Purif. 2004;36:244–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ejima D, Yumioka R, Tsumoto K, Arakawa T. Effective elution of antibodies by arginine and arginine derivatives in affinity chromatography. Anal Biochem. 2005;345:250–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ejima D, Yumioka R, Arakawa T, Tsumoto K. Arginine as an effective additive in gel permeation chromatography. J Chromatogr A. 2005;1094:49–55.

    Article  CAS  PubMed  Google Scholar 

  9. Hautbergue GM, Golovanov AP. Increasing the sensitivity of cryoprobe protein NMR experiments by using the sole low-conductivity arginine glutamate salt. J Magn Reson. 2008;191:335–9.

    Article  CAS  PubMed  Google Scholar 

  10. Placzek WJ, Almeida MS, Wüthrich K. NMR structure and functional characterization of a human cancer-related nucleoside triphosphatase. J Mol Biol. 2007;367:788–801.

    Article  CAS  PubMed  Google Scholar 

  11. Song J, Zhao KQ, Newman CL, Vinarov DA, Markley JL. Solution structure of human sorting nexin 22. Protein Sci. 2007;16:807–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog. 2004;20:1301–8.

    Article  CAS  PubMed  Google Scholar 

  13. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, et al. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem. 2007;127:1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh R, Sharma S, Chattopadhyay K. Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods. Biochemistry. 2009;48:1135–43.

    Article  CAS  PubMed  Google Scholar 

  15. Ito L, Shiraki K, Matsuura T, Okumura M, Hasegawa K, Baba S, et al. High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine. Protein Eng Des Sel. 2011;24:269–74.

    Article  CAS  PubMed  Google Scholar 

  16. Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, et al. Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS One. 2007;2:e1176.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shukla D, Trout BL. Interaction of arginine with proteins and the mechanism by which it inhibits aggregation. J Phys Chem B. 2010;114:13426–38.

    Article  CAS  PubMed  Google Scholar 

  18. Shah D, Shaikh RA, Peng X, Rajagopalan R. Effects of arginine on heat-induced aggregation of concentrated protein solutions. Biotechnol Prog. 2011;27:513–20.

    Article  CAS  PubMed  Google Scholar 

  19. Kameoka D, Ueda T, Imoto T. Effect of the conformational stability of the CH2 domain on the aggregation and peptide cleavage of a humanized IgG. Appl Biochem Biotechnol. 2011;164:642–54.

    Article  CAS  PubMed  Google Scholar 

  20. Kameoka D, Masuzaki E, Ueda T, Imoto T. Effect of buffer species on the unfolding and the aggregation of humanized IgG. J Biochem. 2007;142:383–91.

    Article  CAS  PubMed  Google Scholar 

  21. Tischenko VM, Zav’yalov VP, Medgyesi GA, Potekhin SA, Privalov PL. A thermodynamic study of cooperative structures in rabbit immunoglobulin G. Eur J Biochem. 1982;126:517–21.

    Article  CAS  PubMed  Google Scholar 

  22. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99:2200–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lilyestrom WG, Shire SJ, Scherer TM. Influence of the cosolute environment on IgG solution structure analyzed by small-angle X-ray scattering. J Phys Chem B. 2012;116:9611–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nakakido M, Tanaka Y, Mitsuhori M, Kudou M, Ejima D, Arakawa T, et al. Structure-based analysis reveals hydration changes induced by arginine hydrochloride. Biophys Chem. 2008;137:105–9.

    Article  CAS  PubMed  Google Scholar 

  25. Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc. 2004;126:8933–9.

    Article  CAS  PubMed  Google Scholar 

  26. Shukla D, Trout BL. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility. J Phys Chem B. 2011;115:11831–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Dr. Kohei Tsumoto (Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo) for thoughtful discussions. The authors also thank many individuals of our departments for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, M., Kameoka, D., Torizawa, T. et al. Thermodynamic and Fluorescence Analyses to Determine Mechanisms of IgG1 Stabilization and Destabilization by Arginine. Pharm Res 31, 992–1001 (2014). https://doi.org/10.1007/s11095-013-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1221-2

KEY WORDS

Navigation