Skip to main content
Log in

Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Predicting thermal protein stability is of major interest in the development of protein-based biopharmaceuticals. Therefore, this study provides a predictive tool for determining transition enthalpies, which can be used for ranking different proteins according to their thermal stability.

Methods

Unfolding and aggregation profiles of eight different therapeutic monoclonal antibodies (mAbs) of type G, isotype 1 were investigated. The unfolding profiles were determined by intrinsic fluorescence (IF) spectroscopy and differential scanning calorimetry (DSC). A three-state unfolding fitting model was used to determine thermodynamic parameters for macromolecular multi-domain mAbs in IF experiments, like the van’t Hoff enthalpy change (∆Hvh) and the entropy change (∆S) of the unfolding event. The derived values were compared to thermodynamic parameters obtained directly by calorimetry. Moreover, differences in the Fab enthalpies were used to predict aggregation behavior and protein thermal stabilities. To do so, the liquid-formulated mAbs were investigated exemplarily by size exclusion chromatography (SEC) after accelerated thermal-induced stress conditions.

Results

Comparing the thermodynamic parameters derived from IF spectroscopy and DSC resulted in similar values. Data generated by thermal-induced stress at 40°C show similar stability ranking as postulated through the Fab enthalpies for mAbs in two different formulations, while at 25°C a meaningful ranking is not possible, because distinct differences in the thermal stability cannot be observed. The additional consideration of Fab enthalpies to predict the 40 °C SEC ranking seems to be more reliable compared to the use of exclusively the melting temperatures or aggregation onset temperatures and times.

Conclusion

We show that thermodynamic profiling can help predicting unfolding and aggregation properties of therapeutic mAbs at 40°C. Therefore, analyzing thermodynamic unfolding parameters is a useful and supportive tool discriminating thermal stability profiles of mAbs for further pharmaceutical development and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

∆cp :

heat capacity change

∆G:

Gibbs free energy

∆Hcal :

calorimetric enthalpy

∆Hvh :

van’t Hoff enthalpy

∆S:

entropy

CH-domain:

constant antibody domain of the heavy chain

CHO:

Chinese Hamster Ovary

cp,Tm :

heat capacity of the melting temperature

c.u.:

cooperative unit

DSC:

differential scanning calorimetry

F:

folded state

f:

state fraction

Fab:

fragment antigen binding

Fc:

fragment crystallizable

FE330 :

fluorescence emission at 330 nm

FE350 :

fluorescence emission at 350 nm

HP/UP-SEC:

high performance / ultra performance size exclusion chromatography

I:

intermediate state

IF:

intrinsic fluorescence spectroscopy

IgG1:

immunoglobulin type G isotype 1

K:

equilibrium constant

LENP:

Lumry-Eyring nucleated polymerization

mAb:

monoclonal antibody

mAU:

milli arbitrary units

MWCO:

molecular weight cut off

n:

reaction order

R:

gas constant

S:

slope

T:

temperature

Tagg :

aggregation onset temperature

tagg :

aggregation onset time

Tm :

melting temperature

U:

unfolded state

y:

signals of the IF thermograms

Y:

single state signals

References

  1. Roberts CJ, Das TK, Sahin E. Predicting solution aggregation rates for therapeutic proteins: approaches and challenges. Int J Pharm. 2011;418(2):318–33.

    Article  CAS  PubMed  Google Scholar 

  2. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1–2):1–30.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Nema S, Teagarden D. Protein aggregation--pathways and influencing factors. Int J Pharm. 2010;390(2):89–99.

    Article  CAS  PubMed  Google Scholar 

  4. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28(4):920–33.

    Article  Google Scholar 

  5. Dill KA. Dominant forces in protein folding. Biochemistry. 1990;19(31):7133–55.

    Article  Google Scholar 

  6. Meuzelaar H, Vreede J, Woutersen S. Influence of Glu/Arg, asp/Arg, and Glu/Lys salt bridges on α-helical stability and folding kinetics. Biophys J. 2016;110(11):2328–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubelka J, Henry ER, Cellmer T, Hofrichter J, Eaton WA. Chemical, physical, and theoretical kinetics of an ultrafast folding protein. Proc Natl Acad Sci. 2008;105(48):18655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boehm K, Guddorf J, Albers A, Kamiyama T, Fetzner S, Hinz HJ. Thermodynamic analysis of denaturant-induced unfolding of HodC69S protein supports a three-state mechanism. Biochemistry. 2008;47(27):7116–26.

    Article  CAS  PubMed  Google Scholar 

  9. Davis CM, Dyer RB. The role of electrostatic interactions in folding of β-proteins. J Am Chem Soc. 2016;138(4):1456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naganathan AN, Doshi U, Muñoz V. Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments. J Am Chem Soc. 2007;129(17):5673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beermann B, Guddorf J, Boehm K, Albers A, Kolkenbrock S, Fetzner S, et al. Stability, unfolding, and structural changes of cofactor-free 1H-3-Hydroxy-4-oxoquinaldine 2,4-Dioxygenase. Biochemistry. 2007;46(14):4241–9.

    Article  CAS  PubMed  Google Scholar 

  12. Zimm BH, Bragg JK. Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys. 1959;31(2):526–35.

    Article  CAS  Google Scholar 

  13. Seelig J, Schönfeld H-J. Thermal protein unfolding by differential scanning calorimetry and circular dichroism spectroscopy two-state model versus sequential unfolding. Q Rev Biophys. 2016;49.

  14. Li-Blatter X, Seelig J. Thermal and chemical unfolding of lysozyme. Multistate Zimm–Bragg theory versus two-state model. J Phys Chem B. 2019;123(48):10181–91.

    Article  CAS  PubMed  Google Scholar 

  15. Garidel P, Eiperle A, Blech M, Seelig J. Thermal and chemical unfolding of a monoclonal IgG1 antibody: application of the multi-state Zimm-Bragg theory. Biophys J. 2020;118:4067–1075.

  16. Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Analytical Biochemistry. 2018;561–562:70–88.

    Article  PubMed  Google Scholar 

  17. Breitsprecher D, Linke P, Schulze A, Söltl F, Garidel P, Blech M. Getting the Full Picture: Predicting the Aggregation propensity of mAbs Using Chemical and Thermal Denaturation on a Single, Fully Automated Platform, Application Note NT-PR-011, 2016:[7 p.].

  18. Söltl F, Derix J, Blech M, Breitsprecher D. Analysis of formulation-dependent colloidal and conformational stability of monoclonal antibodies, Application Note NT-PR-005, 2015:[7 p.].

  19. Seeliger D, Schulz P, Litzenburger T, Spitz J, Hoerer S, Blech M, et al. Boosting antibody developability through rational sequence optimization. mAbs. 2015;7(3):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bergemann K, Eckermann C, Garidel P, Grammatikos S, Jacobi A, Kaufmann H, et al. Production and downstream processing. Handbook of therapeutic antibodies 2007. p. 199–237.

  21. Garidel P, Karow AR, Blech M. Orthogonal spectroscopic techniques for the early developability assessment of therapeutic protein candidates. Spectrosc Eur. 2014;28(4):9–13.

    Google Scholar 

  22. Eftink MR. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994;66(2):482–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garidel P, Hegyi M, Bassarab S, Weichel M. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008;3(9–10):1201–11.

    Article  CAS  PubMed  Google Scholar 

  24. Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods in Enzymology. 1986;131:4–51.

    Article  CAS  PubMed  Google Scholar 

  25. Serdyuk IN, Zaccai NR, Zaccai J. Methods in molecular biophysics: structure, dynamics, function. Cambridge University Press; 2007. p. 194–220.

  26. Færgeman NJ, Sigurskjold BW, Kragelund BB, Andersen KV, Knudsen J. Thermodynamics of ligand binding to acyl-coenzyme a binding protein studied by titration Calorimetry. Biochemistry. 1996;35(45):14118–26.

    Article  PubMed  Google Scholar 

  27. Gummadi SN. What is the role of thermodynamics on protein stability. Biotechnol Bioprocess Eng. 2003;8(9):9–18.

    Article  CAS  Google Scholar 

  28. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–93.

    PubMed  PubMed Central  Google Scholar 

  29. Meuzelaar H, Tros M, Huerta-Viga A, van Dijk CN, Vreede J, Woutersen S. Solvent-exposed salt bridges influence the kinetics of α-Helix folding and unfolding. The Journal of Physical Chemistry Letters. 2014;5(5):900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doig AJ, Sternberg MJE. Side-chain conformational entropy in protein folding. Protein Sci. 1995;4(11):2247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makhatadze GI, Privalov PL. Energetics of Protein Structure. Advances in Protein Chemistry 1995. p. 307–425.

  32. Southall NT, Dill KA, Haymet A. A view of the hydrophobic effect. ACS Publications; 2002.

  33. Garber E, Demarest SJ. A broad range of fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355(3):751–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. Advances in protein chemistry and structural biology. 84: Elsevier; 2011. p. 41–61.

  35. Shimba N, Torigoe H, Takahashi H, Masuda K, Shimada I, Arata Y, et al. Comparative thermodynamic analyses of the Fv, fab* and fab and fab fragments of anti-dansyl mouse monoclonal antibody. FEBS Lett. 1995;360(3):247–50.

    Article  CAS  PubMed  Google Scholar 

  36. Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97(4):1414–26.

    Article  CAS  PubMed  Google Scholar 

  37. Andersen CB, Manno M, Rischel C, Thórólfsson M, Martorana V. Aggregation of a multidomain protein : a coagulation mechanism governs aggregation of a model IgG1 antibody under weak thermal stress. Protein Sci. 2010;19(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  38. Sahin E, Grillo AO, Perkins MD, Roberts CJ. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci. 2010;99(12):4830–48.

    Article  CAS  PubMed  Google Scholar 

  39. Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci. 2011;100(6):2087–103.

    Article  CAS  PubMed  Google Scholar 

  40. Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Competing aggregation pathways for monoclonal antibodies. FEBS Lett. 2014;588(6):936–41.

    Article  CAS  PubMed  Google Scholar 

  41. Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, et al. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol Pharm. 2015;12(4):1005–17.

    Article  CAS  PubMed  Google Scholar 

  42. Andrews JM, Roberts CJ. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B. 2007;111(27):7897–913.

    Article  CAS  PubMed  Google Scholar 

  43. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58(2):110–20.

    Article  CAS  Google Scholar 

  44. Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98(5):927–38.

    Article  CAS  PubMed  Google Scholar 

  45. Singla A, Bansal R, Joshi V, Rathore AS. Aggregation kinetics for IgG1-based monoclonal antibody therapeutics. AAPS J. 2016;18(3):689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seelig J. Cooperative protein unfolding. A statistical-mechanical model for the action of denaturants. Biophys Chem. 2018;233:19–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Richard Melien designed and Michaela Blech designed and supervised the study. Experimental research, data analysis, and evaluation was performed by Richard Melien. All authors contributed to the data analysis. The first draft was written by Richard Melien and was reviewed by Patrick Garidel, Dariush Hinderberger, and Michaela Blech.

Corresponding author

Correspondence to Michaela Blech.

Additional information

Guest Editors: Ahmed Besheer and Hanns-Christian Mahler

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melien, R., Garidel, P., Hinderberger, D. et al. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling. Pharm Res 37, 78 (2020). https://doi.org/10.1007/s11095-020-02792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02792-1

Key Words

Navigation