Skip to main content

Advertisement

Log in

Insight into Polycation Chain Length Affecting Transfection Efficiency by O-Methyl-Free N,N,N-Trimethyl Chitosans as Gene Carriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The structure–function relationship and mechanism of polycations as gene carriers have attracted considerable research interest in recent years. The present study was to investigate the relationship between polycation chain length and transfection efficiency (RCL-TE), and the corresponding mechanism by O-methyl-free N,N,N-trimethyl chitosans (TMCs) as gene carriers.

Methods

Four TMCs with various chain lengths were synthesized and used to evaluate the RCL-TE. To investigate the details of RCL-TE, a number of factors such as cytotoxicity, cellular uptake efficiency, cellular uptake pathway and intracellular trafficking, were evaluated.

Results

In comparison to short chain length TMCs (S-TMCs), long chain length ones (L-TMCs) mediated higher gene expression. The polyplexes formed by L-TMCs and pDNA showed higher stability. The cellular uptake pathway and intracellular trafficking of these TMC/pDNA polyplexes were different. These above factors are probably the key ones in RCL-TE rather than polycation–DNA binding affinity, polyplex particle size in water, zeta potential, serum, cytotoxicity, and cellular uptake efficiency.

Conclusions

For rational design of chitosan-based polycations as gene carriers, polycations with relative long chain lengths are more favorable and more attention should be paid to polyplex stability, function of uncomplexed polycation chains, cellular uptake pathway, and intracellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Yue Y, Jin F, Deng R, Cai J, Chen Y, Lin MCM, et al. Revisit complexation between DNA and polyethylenimine — Effect of uncomplexed chains free in the solution mixture on gene transfection. J Control Release. 2011;155:67–76.

    Article  CAS  PubMed  Google Scholar 

  2. Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Vårum KM. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials. 2010;31:975–87.

    Article  CAS  PubMed  Google Scholar 

  3. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27.

    Article  CAS  PubMed  Google Scholar 

  4. Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vitro. J Control Release. 2008;125:145–54.

    Article  CAS  PubMed  Google Scholar 

  5. Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials. 2002;23:153–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103:643–53.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144:46–54.

    Article  CAS  PubMed  Google Scholar 

  8. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005;26:6343–56.

    Article  CAS  PubMed  Google Scholar 

  9. Domard A, Rinaudo M, Terrassin C. New method for the quaternization of chitosan. Int J Biol Macromol. 1986;8:105–7.

    Article  CAS  Google Scholar 

  10. Sieval AB, Thanou M, Kotze AF, Verhoef JC, Brussee J, Junginger HE. Preparation and NMR characterization of highly substitutedN-trimethyl chitosan chloride. Carbohyd Polym. 1998;36:157–65.

    Article  CAS  Google Scholar 

  11. Verheul RJ, Amidi M, van der Wal S, van Riet E, Jiskoot W, Hennink WE. Synthesis, characterization and in vitro biological properties of O-methyl free N, N N-trimethylated chitosan. Biomaterials. 2008;29:3642–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jintapattanakit A, Mao S, Kissel T, Junyaprasert VB. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur J Pharm Biopharm. 2008;70:563–71.

    Article  CAS  PubMed  Google Scholar 

  13. Song Y, Wang H, Zeng X, Sun Y, Zhang X, Zhou J, et al. Effect of molecular weight and degree of substitution of quaternized cellulose on the efficiency of gene transfection. Bioconjug Chem. 2010;21:1271–9.

    Article  CAS  PubMed  Google Scholar 

  14. Eltoukhy AA, Siegwart DJ, Alabi CA, Rajan JS, Langer R, Anderson DG. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials. 2012;33:3594–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther. 2004;11:1441–52.

    Article  PubMed  Google Scholar 

  16. Forrest ML, Pack DW. On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol Ther. 2002;6:57–66.

    Article  CAS  PubMed  Google Scholar 

  17. Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol. 2008;440:15–33.

    Article  CAS  PubMed  Google Scholar 

  18. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592–5.

    CAS  PubMed  Google Scholar 

  19. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–63.

    Article  CAS  PubMed  Google Scholar 

  20. Romøren K, Pedersen S, Smistad G, Evensen Ø, Thu BJ. The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes. Int J Pharm. 2003;261:115–27.

    Article  PubMed  Google Scholar 

  21. Mastrobattista E, Hennink WE. Polymers for gene delivery: charged for success. Nat Mater. 2012;11:10–2.

    Article  CAS  Google Scholar 

  22. von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–53.

    Article  Google Scholar 

  23. Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158:371–8.

    Article  CAS  PubMed  Google Scholar 

  24. Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol. 2002;9:1275–85.

    Article  CAS  PubMed  Google Scholar 

  25. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Reilly MJ, Larsen JD, Sullivan MO. Polyplexes traffic through Caveolae to the Golgi and endoplasmic reticulum en route to the nucleus. Mol Pharm. 2012;9:1280–90.

    CAS  PubMed  Google Scholar 

  27. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  28. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control Release. 2001;73:401–16.

    Article  CAS  PubMed  Google Scholar 

  30. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302.

    Article  CAS  PubMed  Google Scholar 

  31. Green JJ, Langer R, Anderson DG. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res. 2008;41:749–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface. 2010;7:S67–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yue Y, Jin F, Deng R, Cai J, Dai Z, Lin MCM, et al. Revisit complexation between DNA and polyethylenimine — Effect of length of free polycationic chains on gene transfection. J Control Release. 2011;152:143–51.

    Article  CAS  PubMed  Google Scholar 

  34. Deng R, Yue Y, Jin F, Chen Y, Kung H, Lin MCM, et al. Revisit the complexation of PEI and DNA — How to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure? J Control Release. 2009;140:40–6.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang H, Kim Y, Arote R, Nah J, Cho M, Choi Y, et al. Chitosan-graft-polyethylenimine as a gene carrier. J Control Release. 2007;117:273–80.

    Article  CAS  PubMed  Google Scholar 

  36. Nam HY, Nam K, Lee M, Kim SW, Bull DA. Dendrimer type bio-reducible polymer for efficient gene delivery. J Control Release. 2012;160:592–600.

    Google Scholar 

  37. Hu W, Syu W, Chen W, Ruaan R, Cheng Y, Chien C, et al. Use of biotinylated chitosan for substrate-mediated gene delivery. Bioconjug Chem. 2012;23:1587–99.

    Article  CAS  PubMed  Google Scholar 

  38. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med. 2004;6:1102–11.

    Article  CAS  PubMed  Google Scholar 

  39. Ma PL, Buschmann MD, Winnik FM. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content. Biomacromolecules. 2010;11:549–54.

    Article  CAS  PubMed  Google Scholar 

  40. Dai Z, Gjetting T, Mattebjerg MA, Wu C, Andresen TL. Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials. 2011;32:8626–34.

    Article  CAS  PubMed  Google Scholar 

  41. Thibault M, Astolfi M, Tran-Khanh N, Lavertu M, Darras V, Merzouki A, et al. Excess polycation mediates efficient chitosan-based gene transfer by promoting lysosomal release of the polyplexes. Biomaterials. 2011;32:4639–46.

    Article  CAS  PubMed  Google Scholar 

  42. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    Article  CAS  PubMed  Google Scholar 

  43. El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther. 2013;21:1118–30.

    Article  CAS  PubMed  Google Scholar 

  44. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Med. 2005;12:468–74.

    CAS  Google Scholar 

  45. van der Aa M, Huth U, Häfele S, Schubert R, Oosting R, Mastrobattista E, et al. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res. 2007;24:1590–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Thomas JJ, Rekha MR, Sharma CP. Unraveling the intracellular efficacy of dextran-histidine polycation as an efficient nonviral gene delivery system. Mol Pharm. 2011;9:121–34.

    Article  PubMed  Google Scholar 

  47. Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc Natl Acad Sci USA. 2003;100:3878–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kulkarni RP, Wu DD, Davis ME, Fraser SE. Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc Natl Acad Sci USA. 2005;102:7523–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006;27:5143–50.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are thankful for the financial support from the National Natural Science Foundation of China (NSFC 21034003) and Program of Shanghai Subject Chief Scientist (12XD1401000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzhong Shao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Wang, S. & Shao, Z. Insight into Polycation Chain Length Affecting Transfection Efficiency by O-Methyl-Free N,N,N-Trimethyl Chitosans as Gene Carriers. Pharm Res 31, 895–907 (2014). https://doi.org/10.1007/s11095-013-1211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1211-4

KEY WORDS

Navigation