Skip to main content

Advertisement

Log in

Effect of Rhamnolipids on Permeability Across Caco-2 Cell Monolayers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This report describes the effect of rhamnolipids (RLs), an amphiphilic biosurfactant produced by the bacterium Pseudomonas aeruginosa, on the integrity and permeability across Caco-2 cell monolayers.

Methods

We measured the trans-epithelial electrical resistance (TEER) and permeability of [14C]mannitol across Caco-2 cell monolayers upon incubation with 0.01–5.0% v/v RLs as a function of incubation time (30, 60, 90, and 120 min). We also studied the recovery of RL-treated Caco-2 cell monolayers upon incubation with Kaempferol, which is a natural flavonoid that promotes the assembly of the tight junctions.

Results

TEER of Caco-2 cell monolayers incubated with 0.01–5.0% v/v RLs solution dropped to 80–28% of that of untreated cells. Decline in TEER was associated with an increase in [14C]mannitol permeability as a function of RLs concentration and incubation time with Caco-2 cells. Incubation of RLs-treated Caco-2 cell monolayers with normal culture medium for 48 h did not restore barrier integrity. Whereas, incubation of a RLs-treated Caco-2 cells with culture medium containing Kaempferol for 24 h restored barrier function indicated by the higher TEER and lower [14C]mannitol permeability values.

Conclusions

These results show the ability of RLs to modulate the integrity and permeability of Caco-2 cell monolayers in a concentration- and time-dependent fashion, which suggest their potential to function as a non-toxic permeation enhancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2:289–95.

    Article  CAS  PubMed  Google Scholar 

  2. Cano-Cebrián M, Zornoza T, Granero L, Polache A. Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr Drug Deliv. 2005;2:9–22.

    Article  PubMed  Google Scholar 

  3. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 1998;284:362–9.

    Google Scholar 

  4. Lindmark T, Nikkilä T, Artursson P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther. 1995;275:958–64.

    CAS  PubMed  Google Scholar 

  5. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12:1561–72.

    Article  CAS  PubMed  Google Scholar 

  6. Simona C, Vincent Brett C, Barbara A, Vincenzo P, Fabrizio F, Claudio G, et al. Enhancement of intestinal absorption of 2-methyl cytidine prodrugs. Drug Deliv. 2010;17:214–22.

    Article  Google Scholar 

  7. Aungst BJ, Rogers NJ. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery. Int J Pharm. 1989;53:227–35.

    Article  CAS  Google Scholar 

  8. Bernkop-Schnürch A. Low molecular mass permeation enhancers in oral delivery of macromolecular drugs oral delivery of macromolecular drugs. New York: Springer New York; 2009.

    Google Scholar 

  9. Zeller F, Ueda C, Wulf B, Meyers DG. Effect of caffeine on the oral absorption and disposition of quinidine. Clin Pharm. 1984;3:72–5.

    CAS  PubMed  Google Scholar 

  10. Dos Santos I, Fawaz F, Lagueny AM, Bonini F. Improvement of norfloxacin oral bioavailability by EDTA and sodium caprate. Int J Pharm. 2003;260:1–4.

    Article  PubMed  Google Scholar 

  11. Raiman J, Törmälehto S, Yritys K, Junginger HE, Mönkkönen J. Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. Int J Pharm. 2003;261:129–36.

    Article  CAS  PubMed  Google Scholar 

  12. Tomita M, Doi N, Hayashi M. Effects of acylcarnitines on efflux transporting system in Caco-2 cell monolayers. Eur J Drug Metab Ph. 2010;35:1–7.

    Article  CAS  Google Scholar 

  13. Kitchens K, Kolhatkar R, Swaan P, Eddington N, Ghandehari H. Transport of poly(amidoamine) dendrimers across Caco-2 Cell monolayers: influence of size, charge and fluorescent Labeling. Pharm Res. 2006;23:2818–26.

    Article  CAS  PubMed  Google Scholar 

  14. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release. 2002;81:355–65.

    Article  CAS  PubMed  Google Scholar 

  15. Kitchens KM, El-Sayed MEH, Ghandehari H. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv Drug Deliv Rev. 2005;57:2163–76.

    Article  CAS  PubMed  Google Scholar 

  16. Tajarobi F, El-Sayed M, Rege B, Polli J, Ghandehari H. Transepithelial transport of poly (amidoamine) (PAMAM) dendrimers across Madin-Darby Canine Kidney (MDCK) cells. Int J Pharm. 2001;215:263–7.

    Article  CAS  PubMed  Google Scholar 

  17. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Influence of surface chemistry of poly (amidoamine) dendrimers on Caco-2 cell monolayers. J Bioact Compat Polym. 2003;18:7–22.

    Article  CAS  Google Scholar 

  18. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm. 2003;265:151–7.

    Article  CAS  PubMed  Google Scholar 

  19. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52:117–26.

    Article  CAS  PubMed  Google Scholar 

  20. van der Merwe SM, Verhoef JC, Verheijden JHM, Kotzé AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58:225–35.

    Article  PubMed  Google Scholar 

  21. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J Control Release. 2006;114:1–14.

    Article  CAS  PubMed  Google Scholar 

  22. Schipper NGM, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res. 1996;13:1686–92.

    Article  CAS  PubMed  Google Scholar 

  23. Aungst BJ. Intestinal permeation enhancers. J Pharm Sci. 2000;89:429–42.

    Article  CAS  PubMed  Google Scholar 

  24. Sadekarand S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev. 2011;64:571–88.

    Google Scholar 

  25. Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today. 2005;10:395–408.

    Article  CAS  PubMed  Google Scholar 

  26. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta (BBA) - Biomembr. 2009;1788:832–41.

    Article  CAS  Google Scholar 

  27. Sousa S, Lecuit M, Cossart P. Microbial strategies to target, cross or disrupt epithelia. Curr Opin Cell Biol. 2005;17:489–98.

    Article  CAS  PubMed  Google Scholar 

  28. Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, et al. Zonula occludens toxin structure-function analysis: identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem. 2001;276:19160–5.

    Article  PubMed  Google Scholar 

  29. Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, et al. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest. 1995;96:710–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Salama NN, Fasano A, Lu R, Eddington ND. Effect of the biologically active fragment of zonula occludens toxin, ΔG, on the intestinal paracellular transport and oral absorption of mannitol. Int J Pharm. 2003;251:113–21.

    Article  CAS  PubMed  Google Scholar 

  31. Salama NN, Fasano A, Thakar M, Eddington ND. The effect of ΔG on the transport and oral absorption of macromolecules. J Pharm Sci. 2004;93:1310–9.

    Article  CAS  PubMed  Google Scholar 

  32. Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biot. 2005;68:718–25.

    Article  Google Scholar 

  33. Rejman J, Di Gioia S, Bragonzi A, Conese M. Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection. Hum Gene Ther. 2007;18:642–52.

    Article  CAS  PubMed  Google Scholar 

  34. Zulianello L, Canard C, Köhler T, Caille D, Lacroix J-S, Meda P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun. 2006;74:3134–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vikström E, Bui L, Konradsson P, Magnusson K-E. The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Exp Cell Res. 2009;315:313–26.

    Article  PubMed  Google Scholar 

  36. Suzuki T, Tanabe S, Hara H. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells. J Nutr. 2011;141:87–94.

    Article  CAS  PubMed  Google Scholar 

  37. Yu H, Cook TJ, Sinko PJ. Evidence for Diminished Functional Expression of Intestinal Transporters in Caco-2 Cell Monolayers at High Passages. Pharm Res. 1997;14:757–62.

    Article  CAS  PubMed  Google Scholar 

  38. Douville NJ, Tung Y-C, Li R, Wang JD, El-Sayed MEH, Takayama S. Fabrication of two-layered channel system with embedded electrodes to measure resistance across epithelial and endothelial barriers. Anal Chem. 2010;82:2505–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11:1358–61.

    Article  CAS  PubMed  Google Scholar 

  40. Anderberg EK, Nyström C, Artursson P. Epithelial transport of drugs in cell culture. VII: effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J Pharm Sci. 1992;81:879–87.

    Article  CAS  PubMed  Google Scholar 

  41. Briske-Anderson MJ, Finley JW, Newman SM. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells, Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY), Vol. 214, Royal Society of Medicine; 1997. pp. 248–57.

  42. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769–76.

    Article  CAS  PubMed  Google Scholar 

  43. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci. 2009;1165:62–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Charity J. Wallace and Scott H. Medina contributed equally to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. H. ElSayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, C.J., Medina, S.H. & ElSayed, M.E.H. Effect of Rhamnolipids on Permeability Across Caco-2 Cell Monolayers. Pharm Res 31, 887–894 (2014). https://doi.org/10.1007/s11095-013-1210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1210-5

KEY WORDS

Navigation