Skip to main content

Advertisement

Log in

Electrosprayed Microparticles with Loaded pDNA-Calcium Phosphate Nanoparticles to Promote the Regeneration of Mature Blood Vessels

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The lack of control over microvasculature formation remains a key roadblock to the therapeutic vascularization and regeneration of functional tissues. In the current study, the integration of plasmid DNA (pDNA) condensation and electrospraying technologies was proposed to promote the regeneration of mature blood vessels through injectable or infusible administration of microparticles.

Methods

Calcium phosphate (CP) nanoparticles with encapsulated plasmids encoding vascular endothelial growth factors (pVEGF) and basic fibroblast growth factor (pbFGF) were synthesized using reverse microemulsions. Electrosprayed microparticles with the loading of CP-pDNA nanoparticles were evaluated on both endothelial cells and smooth muscle cells and after subcutaneous infusion into animals.

Results

CP-pDNA nanoparticles was obtained with an average size of around 110 nm and electrosprayed into microparticles, resulting in high loading efficiency and extended protection on pDNA from external DNase environment. The inoculation of poly(ethylene glycol) into microparticle matrices realized a gradual release for 4 weeks of CP-pDNA nanoparticles, leading to an incremental transfection efficiency and strong secretion of extracellular matrices. After subcutaneous infusion of microparticles with encapsulated both CP-pVEGF and CP-pbFGF nanoparticles, significantly higher densities of blood vessels were achieved than those containing individual nanoparticles, and induced a rapid generation of mature blood vessels with few cytotoxicity and inflammation reactions.

Conclusions

Electrosprayed microparticle with CP-pDNA nanoparticles encapsulated promoted the formation of vascular networks, providing clinical relevance for therapeutic vascularization and regeneration of functional tissues after injection to ischemic sites or entrapment into tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Phelps EA, Garcia AJ. Update on therapeutic vascularization strategies. Regen Med. 2009;4:65–80.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Baes M. Metabolism and therapeutic angiogenesis. N Engl J Med. 2008;23:2511–2.

    Article  Google Scholar 

  4. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, et al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia—reperfusion model. J Control Release. 2010;147:30–7.

    Article  CAS  PubMed  Google Scholar 

  5. Fu K, Klibanov AM, Langer R. Protein stability in controlled release systems. Nat Biotechnol. 2000;18:24–5.

    Article  CAS  PubMed  Google Scholar 

  6. Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from: transgene expression and cellular transfection. Mol Ther. 2005;12:475–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Guo R, Xu SJ, Ma L, Huang AB, Gao CY. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. Biomaterials. 2011;32:1019–31.

    Article  CAS  PubMed  Google Scholar 

  8. Neumann S, Kovtun A, Dietzel ID, Epple M, Heumann R. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials. 2009;30:6794–802.

    Article  CAS  PubMed  Google Scholar 

  9. Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 2005;7:E61–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Truong-Le VL, Walsh SM, Schwabert E, Mao HQ, Guggino WB, August JT, et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys. 1999;361:47–56.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang MZ, Kataok K. Nano-structured composites based on calcium phosphate for cellular delivery of therapeutic and diagnostic agents. Nano Today. 2009;4:508–17.

    Article  CAS  Google Scholar 

  12. Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000;6:15–9.

    Article  CAS  PubMed  Google Scholar 

  13. Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, et al. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater. 2012;24:749–54.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    Article  CAS  PubMed  Google Scholar 

  16. Enayati M, Chang MW, Bragman F, Edirisinghe M, Stride E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf A. 2011;382:54–64.

    Article  Google Scholar 

  17. Wu YQ, Clark RL. Controllable porous polymer particles generated by electrospraying. J Colloid Interf Sci. 2007;10:529–35.

    Article  Google Scholar 

  18. Xie JW, Marijnissen JCM, Wang CH. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials. 2006;27:3321–32.

    Article  CAS  PubMed  Google Scholar 

  19. He SH, Xia T, Wang H, Wei L, Luo XM, Li XH. Multiple releases of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater. 2012;8:2659–69.

    Article  CAS  PubMed  Google Scholar 

  20. Deng X, Li X, Huang Z, Jia W, Zhang Y. Optimization of preparative parameters for poly -DL-lactide-poly(ethylene glycol) microspheres with entrapped Vibrio cholera antigens. J Control Release. 1999;58:123–31.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008;8:4108–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wu YQ, Liao IC, Kennedy SJ, Du JZ, Wang J, Leong KW, et al. Electrosprayed core-shell microspheres for protein delivery. Chem Commun. 2010;46:4743–5.

    Article  CAS  Google Scholar 

  23. Yang Y, Li XH, Cheng L, He SH, Zou J, Chen F, et al. Core-sheath-structured fibers with pDNA polyplex loadings for optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater. 2011;7:2533–43.

    Article  CAS  PubMed  Google Scholar 

  24. Becker TA, Kipke DR, Brandon T. Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mater Res. 2001;54:76–86.

    Article  CAS  PubMed  Google Scholar 

  25. Okazaki M, Yoshida Y, Yamaguchi S, Kaneno M, Elliott JC. Affinity binding phenomena of DNA onto apatite crystals. Biomaterials. 2001;22:2459–64.

    Article  CAS  PubMed  Google Scholar 

  26. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  27. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994. p. 1–12.

    Google Scholar 

  28. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kelleher CM, McLean SE, Mecham RP. Vascular extracellular matrix and aortic development. Curr Top Dev Biol. 2004;62:153–88.

    Article  CAS  PubMed  Google Scholar 

  30. Adelow C, Segura T, Hubbell JA, Frey P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials. 2008;29:314–26.

    Article  PubMed  Google Scholar 

  31. Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials. 2004;25:699–706.

    Article  CAS  PubMed  Google Scholar 

  32. Wei L, Lin J, Cai C, Fang Z, Fu W. Drug-carrier/hydrogel scaffold for controlled growth of cells. Eur J Pharm Biopharm. 2011;78:346–54.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor AP, Rodriquez M, Adams K, Goldenberg DM, Blumenthal RD. Altered tumor vessel maturation and proliferation in placenta growth factor producing tumor: potential relationship to post-therapy tumor angiogenesis and recurrence. Int J Cancer. 2003;105:158–64.

    Article  CAS  PubMed  Google Scholar 

  34. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.

    Article  CAS  PubMed  Google Scholar 

  35. Nillesen STM, Geutjes PJ, Wiismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen—heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007;28:1123–31.

    Article  CAS  PubMed  Google Scholar 

  36. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  37. Ye L, Zhang W, Su LP. Nanoparticle based delivery of hypoxia-regulated VEGF transgene system combined with myoblast engraftment for myocardial repair. Biomaterials. 2011;32:2424–31.

    Article  CAS  PubMed  Google Scholar 

  38. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. 2000;101:118–21.

    Article  CAS  PubMed  Google Scholar 

  39. Zacchigna S, Tasciotti E, Kusmic C, Arsic N, Sorace O, Marini C, et al. In vivo imaging shows abnormal function of vascular endothelial growthfactor-induced vasculature. Hum Gene Ther. 2007;18:515–24.

    Article  CAS  PubMed  Google Scholar 

  40. Klaqsbrun M. The fibroblast growth factor family: structural and biological properties. Progr Growth Factor Res. 1989;1:207–35.

    Article  Google Scholar 

Download references

Acknowledgments And Disclosures

This work was supported by National Natural Science Foundation of China (51073130 and 21274117), Specialized Research Fund for the Doctoral Program of Higher Education (20120184110004), and Scientific and Technical Supporting Programs of Sichuan Province (2013SZ0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary materials available

The preparation and characterization of pDNA-loaded CP nanoparticles with varying Ca/P ratios are included in the supplementary materials. (DOC 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Xia, T., Wang, H. et al. Electrosprayed Microparticles with Loaded pDNA-Calcium Phosphate Nanoparticles to Promote the Regeneration of Mature Blood Vessels. Pharm Res 31, 874–886 (2014). https://doi.org/10.1007/s11095-013-1209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1209-y

KEY WORDS

Navigation