Skip to main content

Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles

  • Protocol
  • First Online:
Vascular Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2375))

Abstract

Electrospinning has become a popular polymer processing technique for application in vascular tissue engineering due to its unique capability to fabricate porous vascular grafts with fibrous morphology closely mimicking the natural extracellular matrix (ECMs). However, the inherently small pore sizes of electrospun vascular grafts often inhibit cell infiltration and impede vascular regeneration. Here we describe an effective and controllable method to increase the pore size of electrospun poly(ε-caprolactone) (PCL) vascular graft. With this method, composite grafts are prepared by turning on or off electrospraying of poly(ethylene oxide) (PEO) microparticles during the process of electrospinning PCL fibers. The PEO microparticles are used as a porogen agent and can be subsequently selectively removed to create a porogenic layer within the electrospun PCL grafts. Three types of porogenic PCL grafts were constructed using this method. The porogenic layer was either the inner layer, the middle one, or the outer one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekaputra AK, Prestwich GD, Cool SM et al (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9(8):2097–2103

    Article  CAS  Google Scholar 

  2. Xie Y, Guan Y, Kim SH et al (2016) The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses. J Mech Behav Biomed 61:410–418

    Article  CAS  Google Scholar 

  3. Wang W, Nie W, Zhou X et al (2018) Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomater 79:168–181

    Article  CAS  Google Scholar 

  4. Guo Z, Grijpma DW, Poot AA et al (2017) Preparation and characterization of flexible and elastic porous tubular PTMC scaffolds for vascular tissue engineering. Polym Advan Technol 28(10):1239–1244

    Article  CAS  Google Scholar 

  5. Zhu M, Wu Y, Li W et al (2018) Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 183:306–318

    Article  CAS  Google Scholar 

  6. Muylaert DE, van Almen GC, Talacua H et al (2016) Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides. Biomaterials 76:187–195

    Article  CAS  Google Scholar 

  7. Wang K, Zheng W, Pan Y et al (2016) Three-layered PCL grafts promoted vascular regeneration in a rabbit carotid artery model. Macromol Biosci 16(4):608–618

    Article  CAS  Google Scholar 

  8. Zhong S, Zhang Y, Lim CT et al (2012) Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng Part B Rev 18(2):77–87

    Article  CAS  Google Scholar 

  9. Zhao L, Ma S, Pan Y et al (2016) Functional modification of fibrous PCL scaffolds with fusion protein VEGF-HGFI enhanced cellularization and vascularization. Adv Healthc Mater 5(18):2376–2385

    Article  CAS  Google Scholar 

  10. Leong MF, Rasheed MZ, Lim TC et al (2009) In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A 91A(1):232–240

    Article  Google Scholar 

  11. Rnjak-Kovacina J, Weiss AS (2011) Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev 17(5):365–372

    Article  CAS  Google Scholar 

  12. Lowery JL, Datta N, Rutledge GC et al (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials 31(3):491–504

    Article  CAS  Google Scholar 

  13. Blakeney BA, Tambralli A, Anderson JM et al (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6):1583–1590

    Article  CAS  Google Scholar 

  14. McClure MJ, Wolfe PS, Simpson DG et al (2012) The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials 33(3):771–779

    Article  CAS  Google Scholar 

  15. Wright LD, Andric T, Freeman JW et al (2011) Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C 31(1):30–36

    Article  CAS  Google Scholar 

  16. Leong MF, Rasheed MZ, Lim TC et al (2009) In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly (D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res Part A 91A(1):231–240

    Article  CAS  Google Scholar 

  17. Baker BM, Gee AO, Metter RB et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358

    Article  CAS  Google Scholar 

  18. Salata OV (2005) Tools of nanotechnology: electrospray. Curr Nanosci 1(1):25–33

    Article  CAS  Google Scholar 

  19. Zhang S, Kawakami K (2010) One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int J Pharm 397(1):211–217

    Article  CAS  Google Scholar 

  20. Lee YH, Mei F, Bai MY et al (2010) Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release 145(1):58–65

    Article  CAS  Google Scholar 

  21. Almería B, Deng W, Fahmy TM et al (2010) Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interf Sci 343(1):125–133

    Article  Google Scholar 

  22. Wang K, Xu M, Zhu M et al (2013) Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration. J Biomed Mater Res Part A 101(12):3474–3481

    Article  Google Scholar 

  23. Zhu L, Wang K, Ma T et al (2017) Noncovalent bonding of RGD and YIGSR to an electrospun poly(ε-caprolactone) conduit through peptide self-assembly to synergistically promote sciatic nerve regeneration in rats. Adv Healthc Mater 6(8):1600860

    Article  Google Scholar 

  24. Wang K, Zhu M, Li T et al (2014) Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts. J Biomed Nanotechnol 10(8):1588–1598

    Article  CAS  Google Scholar 

  25. Zhong S, Zhang Y, Lim TC et al (2012) Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng Part B Rev 18(2):77–87

    Article  CAS  Google Scholar 

  26. Wang S, Zhang Y, Wang H et al (2009) Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules 10(8):2240–2244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) projects (81772000, 81530059, 91939112), NSFC Research Fund for International Young Scientists (81850410552), and Tianjin Natural Science Foundation (18JCZDJC37600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rafique, M., Midgley, A.C., Wei, T., Wang, L., Kong, D., Wang, K. (2022). Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles. In: Zhao, F., Leong, K.W. (eds) Vascular Tissue Engineering. Methods in Molecular Biology, vol 2375. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1708-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1708-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1707-6

  • Online ISBN: 978-1-0716-1708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics